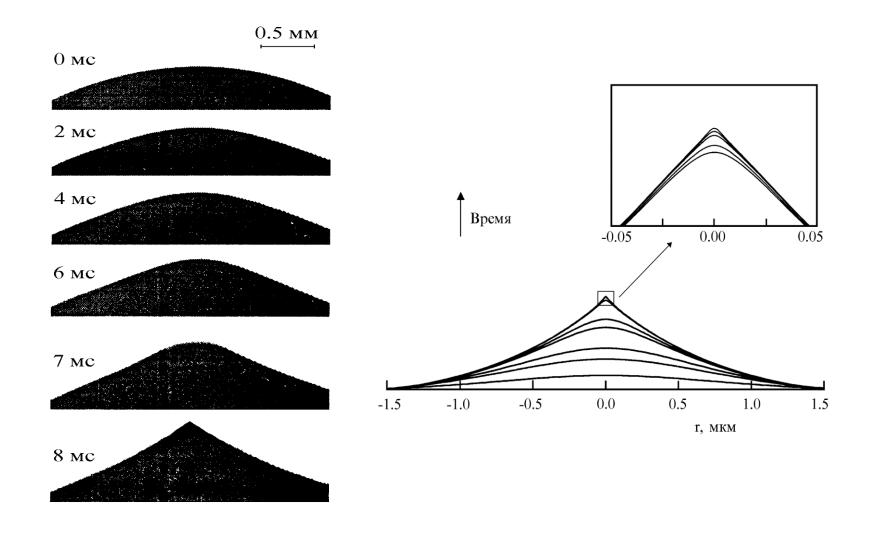
Конические структуры на поверхности жидкости с ионной проводимостью в электрическом поле с учетом влияния объемного и поверхностного зарядов

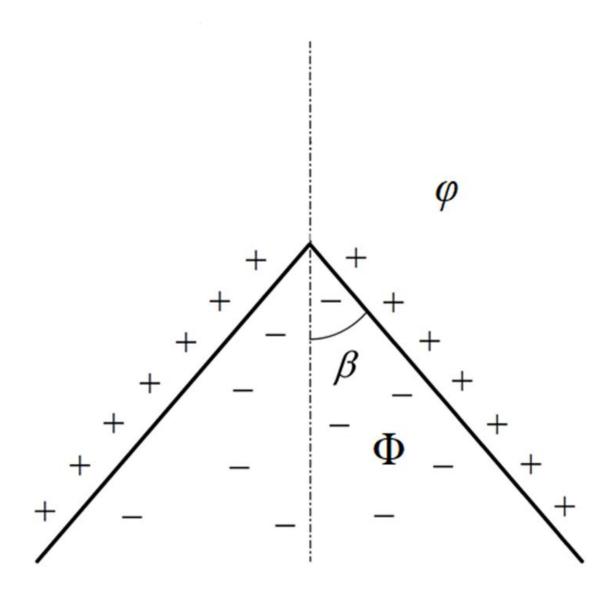
Беляев М. А., аспирант 4 года обучения

Свободная поверхность жидкости становится неустойчивой в сильном внешнем электрическом поле, в результате чего возникают конические образования.



- 1964, Тейлор угол полураствора конуса на поверхности проводящей жидкости равен 49.3°.
- 1994, Ramos, Castellanos конусы возникают на поверхности жидкости с ε >17.6.
- 1994, De La Mora изучалось влияние объемного заряда носителей, испускаемых с вершины, на угол конуса на проводящей жидкости.
- 2014, 2018, Субботин, Семенов конусы с учетом ионного тока на его поверхности с образованием струй на вершине, значения могут быть ε <17.6

Задача 1: конус с дрейфом ионов на поверхности и в объеме жидкости



Основные уравнения

$$\begin{split} \varphi_{RR} + \frac{2}{R} \varphi_R + \frac{1}{R^2} \varphi_{\theta\theta} + \frac{\cot \theta}{R^2} \varphi_{\theta} &= 0, \quad \Phi_{RR} + \frac{2}{R} \Phi_R + \frac{1}{R^2} \Phi_{\theta\theta} + \frac{\cot \theta}{R^2} \Phi_{\theta} &= -\frac{\rho}{\varepsilon_0 \varepsilon}, \\ \rho \left(\Phi_{RR} + \frac{2}{R} \Phi_R \right) + \rho_R \Phi_R &= 0, \quad \sigma \left(\Phi_{RR} + \frac{1}{R} \Phi_R \right) + \sigma_R \Phi_R &= 0. \end{split}$$

Граничные условия

$$\varphi_R = \Phi_R, \qquad \theta = \Theta, \qquad \qquad \frac{1}{R} \varphi_\theta - \frac{\varepsilon}{R} \Phi_\theta = \frac{\sigma}{\varepsilon_0} \qquad \theta = \Theta$$

$$\varphi_\theta = 0, \qquad \theta = 0, \qquad \qquad \Phi_\theta = 0, \qquad \theta = 0$$

$$\Phi_\theta = 0, \qquad \theta = \pi.$$

Баланс давлений

$$p_{\alpha} = p_{E},$$

$$\frac{\alpha}{R} \cot \Theta = \frac{\varepsilon_{0}}{2R^{2}} (\varphi_{\theta}^{2} + (\varepsilon - 1)R^{2}\varphi_{R}^{2})|_{\theta = \Theta}$$

Точные решения

Ищем в виде $\varphi(R, \theta) = F(\theta)R^{1/2}$, подставляя в ур-е Лапласа

$$3F/4 + F_{\theta\theta} + \cot\theta F_{\theta} = 0$$

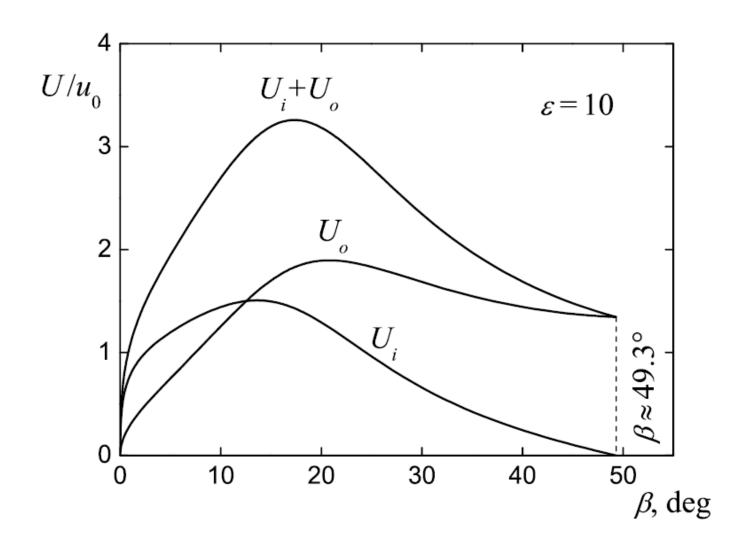
Решение $F = CP_{1/2}(\cos\theta)$, где $P_{1/2} - \phi$ ункция Лежандра порядка $\frac{1}{2}$

Для распределения электрического поля и плотности заряда

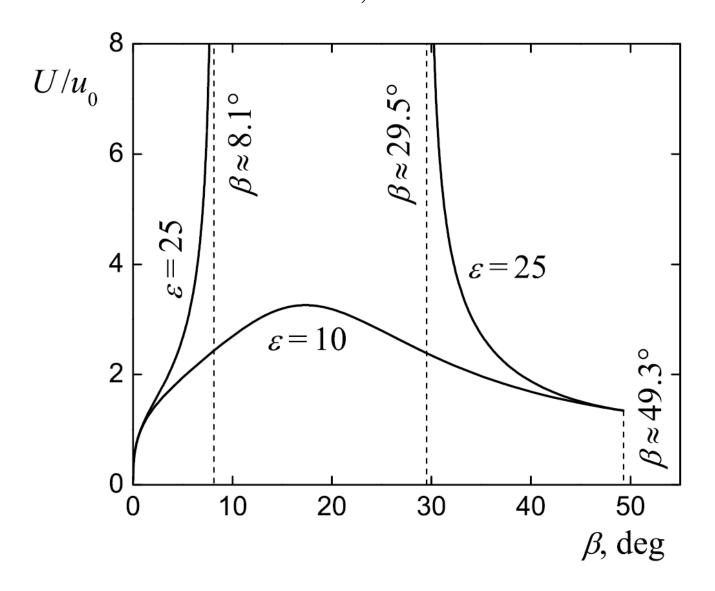
$$\varphi = CP_{1/2}(\cos\theta)R^{1/2}, \quad \Phi = AR^{1/2},$$

$$\rho = BR^{-3/2}, \quad \sigma = DR^{-1/2}$$

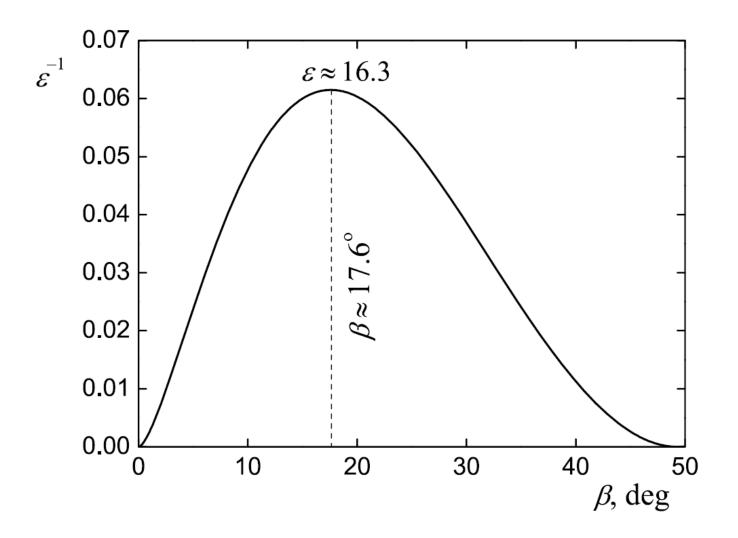
Связь между потенциалом внутри U_i , снаружи U_o и суммарным U и углом конуса



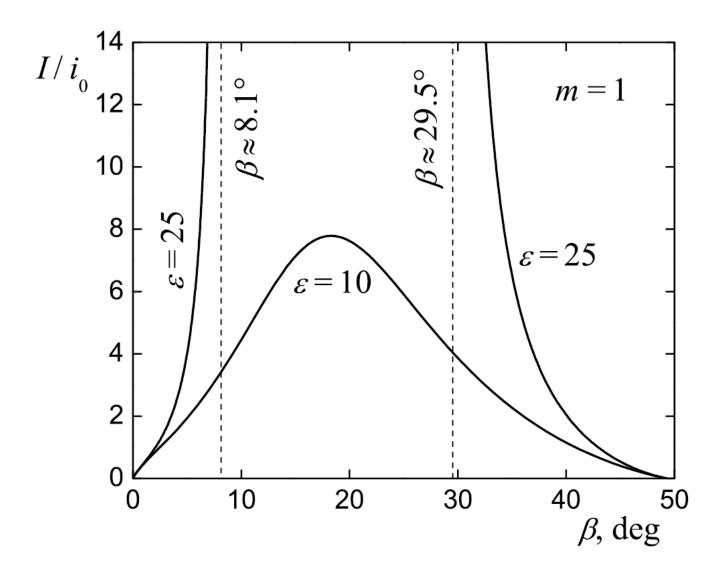
Угловые зависимости полного падения потенциала при $\varepsilon=10,\, \varepsilon=25$



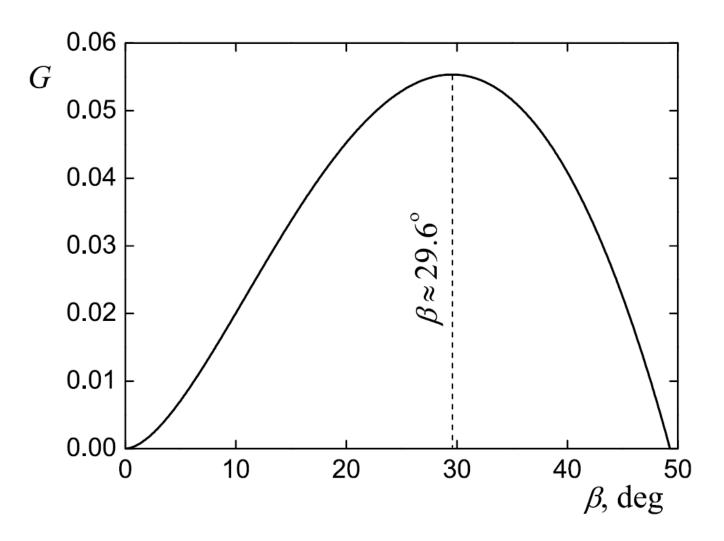
Предельные значения углов отсечки из диапазона $0 \le \beta < \beta_1$ и $\beta_2 < \beta \le \beta_T \approx 49.3^\circ$



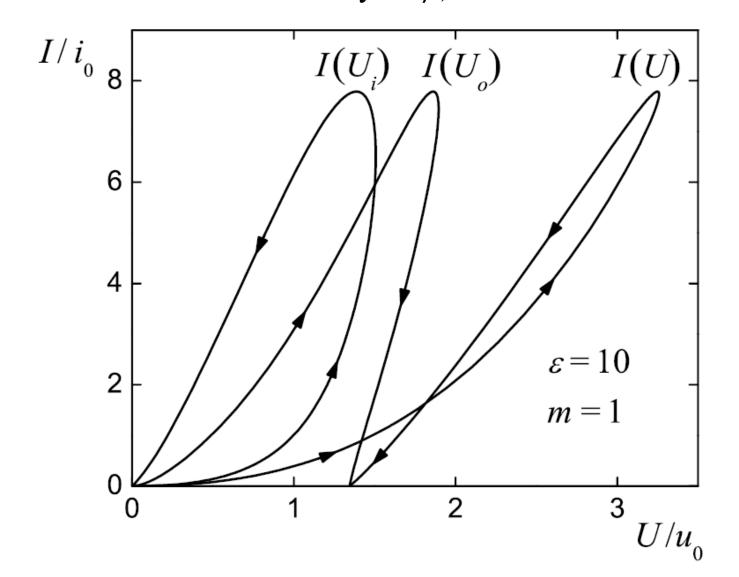
Зависимость между током насыщения и углом конуса



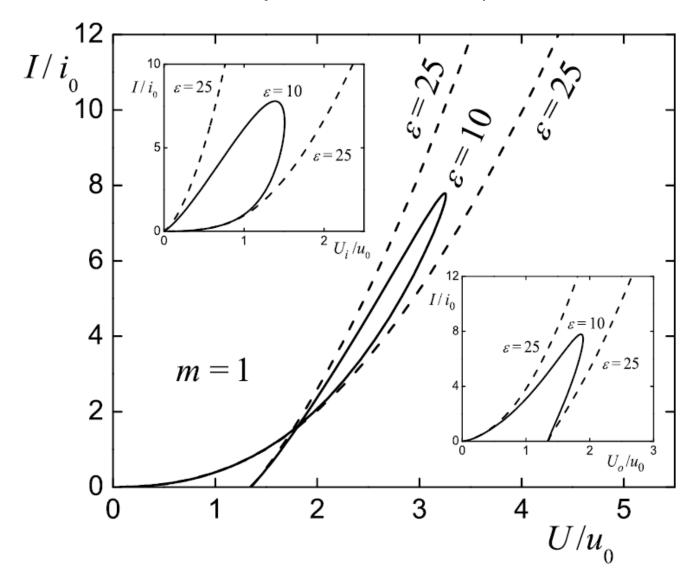
Угловая зависимость для функции, выражающей отношение токов $\frac{I_a}{I_c} = \varepsilon m G(\beta)$, (m- отношение подвижностей)



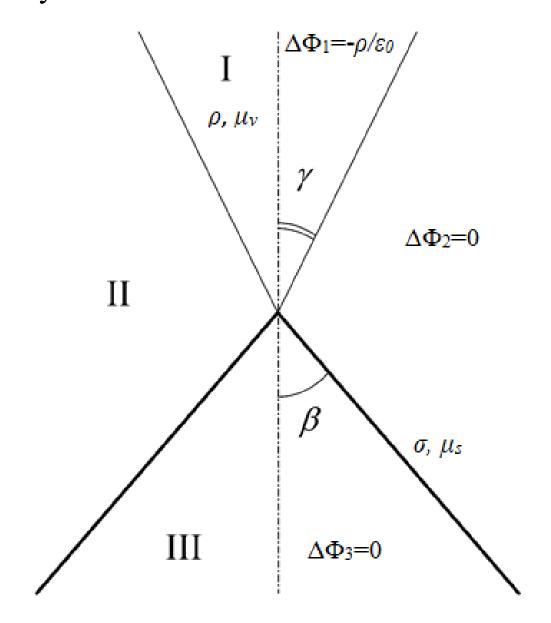
Зависимость тока насыщения от падения потенциала внутри, снаружи и суммарного (стрелки показывают возрастание угла β)



Вольтамперные характеристики для различных значений диэлектрической проницаемости (асимптотики — закон Герни-Мотта $I \sim U^2$)



Задача 2: конус с током на его поверхности и эмиссией с вершины конуса



Граничные условия

$$\frac{\partial \Phi_2}{\partial R} = \frac{\partial \Phi_3}{\partial R}, \quad \frac{1}{R} \left(\frac{\partial \Phi_2}{\partial \theta} - \varepsilon \frac{\partial \Phi_3}{\partial \theta} \right) = \frac{\sigma}{\varepsilon_0}, \quad \theta = \pi - \beta$$

$$\frac{\partial \Phi_1}{\partial R} = \frac{\partial \Phi_2}{\partial R}, \quad \frac{\partial \Phi_2}{\partial \theta} = 0, \quad \theta = \gamma$$

$$\frac{\partial \Phi_3}{\partial \theta} = 0, \quad \theta = \pi$$

Баланс электростатического и капиллярного давления

$$p_S = p_E$$

Равенство тока на поверхности и тока эмиссии с вершины

$$I_s = I_v$$

Точные решения

$$\Phi_1 = AR^{1/2}, \quad \Phi_2 = C_1 P_{1/2}(\cos\theta)R^{1/2} + C_2 P_{1/2}(-\cos\theta)R^{1/2},$$

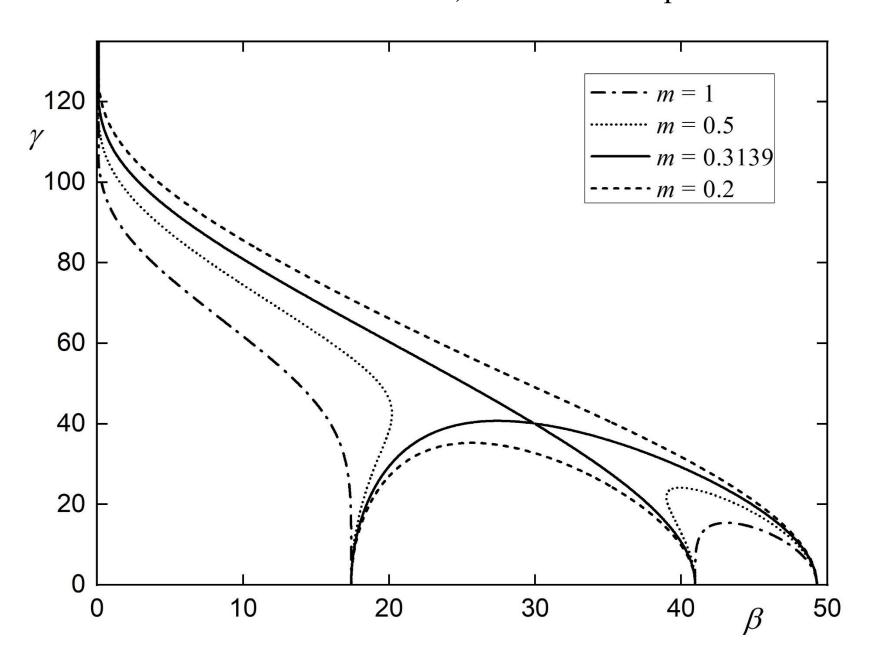
$$\Phi_3 = C_3 P_{1/2}(-\cos\theta) R^{1/2}, \quad \rho = B R^{-3/2}, \quad \sigma = D R^{-1/2}$$

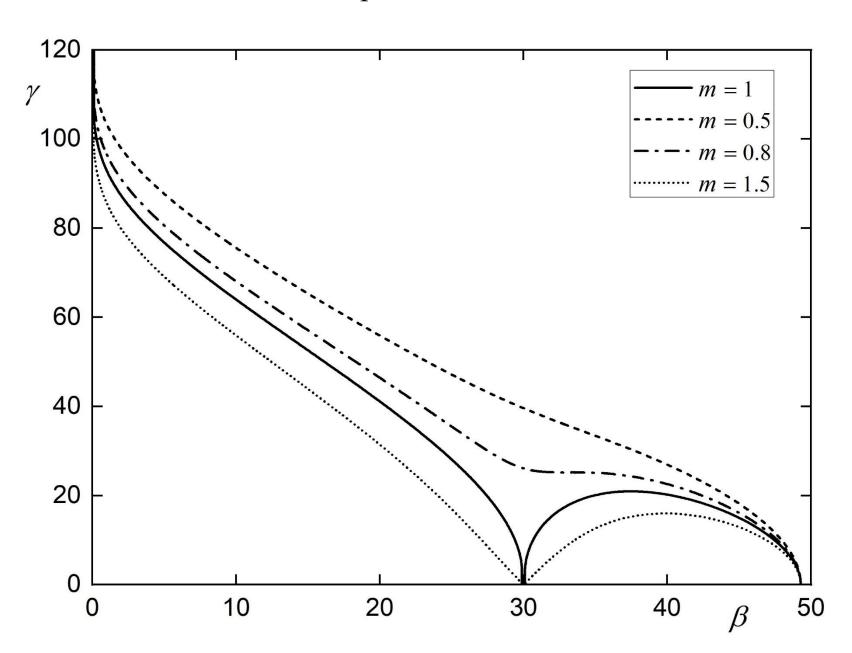
Решение дает возможность найти зависимости между основными характеристиками системы — углами раствора и спрея, током и напряжением.

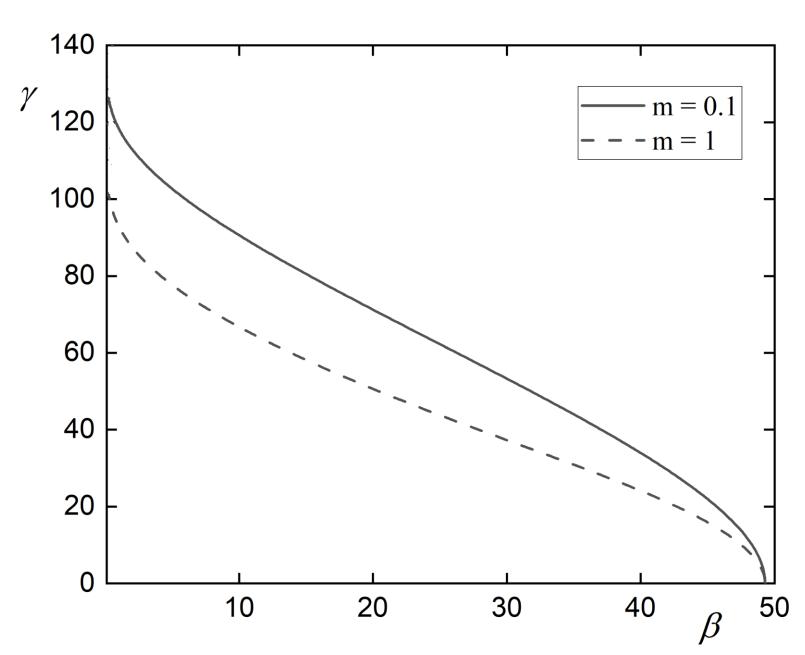
Построим зависимость γ от β при различных значениях ε и m.

 $m \equiv \mu_v/\mu_s$ — отношение подвижностей, μ_v — подвижность в объеме, μ_s — подвижность на поверхности

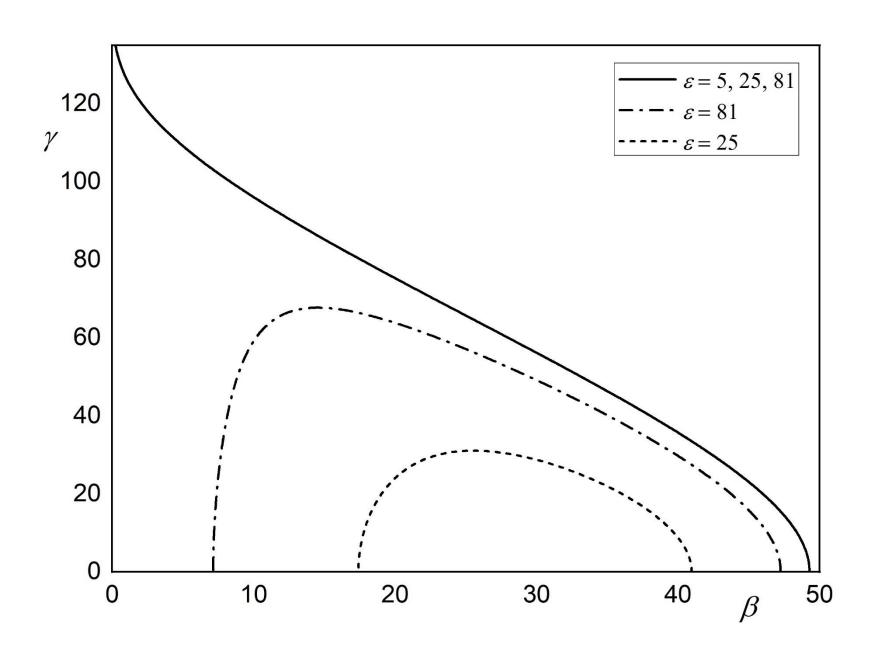
1. Конечные значения m: a) $\varepsilon > \varepsilon_c = 17.6$ при $\varepsilon = 25$



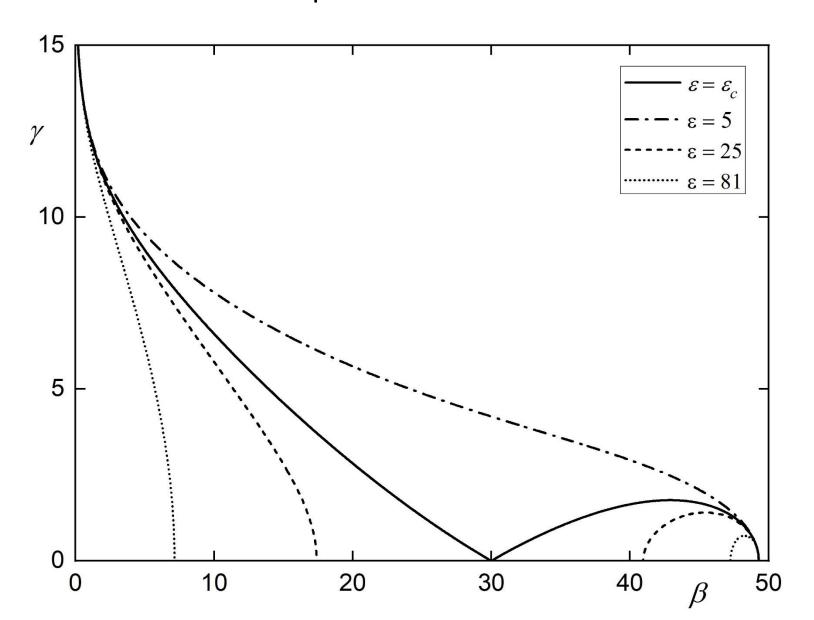




2. Случай m=0, при $\varepsilon=5,\,25,\,81$



3. Случай очень высоких значений m (m=100) при различных ε .



Выводы

- 1. Для обеих задач удается найти точные решения, и, тем самым получить зависимости между основными характеристиками задач.
- 2. Для первой задачи удается построить угловые зависимости токов и напряжений, вольтамперные характеристики. Определены критерии и диапазон углов для существования конусов
- 3. Для второй задачи найдена зависимость между углом раствора и разлета носителей заряда. Детально рассмотрены частные и предельные случаи для различных значений проницаемости и отношения подвижностей.