Научная квалификационная работа аспиранта по теме: Исследование процессов формирования ближнего атомного порядка и образования фаз в бинарных модельных сплавах системы Fe-Mn при ионном облучении

Аспирант Макаров Е.В. Научный руководитель Овчинников В.В. Институт электрофизики УрО РАН

Цель работы:

выполнить фундаментальные исследования процессов формирования ближнего атомного порядка, а также образования фаз в сплавах Fe-Mn с концентрацией марганца меньше 8 ат. % под воздействием облучения непрерывными пучками ионов инертного газа Ar⁺ (E = 5-50 кэB, j = 50-500мкА/см², $F = 10^{11}$ -10¹⁸ см⁻²) при температурах от 50 до 500 °C с исходно неравновесных холоднодеформированных, использованием закаленных и деформированных сдвигом под давлением кручением метастабильных состояний сплавов и сравнить последствия облучения с аналогичными режимами (T(t)) чисто теплового воздействия.

Материалы и методы

Ионный имплантер ИЛМ-1 с ионным источником ПУЛЬСАР-1М $S = 100 \text{ см}^2$ $j = 50 - 500 \text{ мкА/см}^2$ E = 5 - 50 кэВ

Холоднодеформирован ные сплавы: Fe - 6,29 ат. % Mn, Fe - 6,35 ат. % Mn, Fe - 7,85 ат. % Mn.

Сплавы: Fe - 4,10 ат. % Mn, Fe - 7,25 ат. % Mn после закалки, ИПД

Бесконтактный нагреватель с фехралевыми спиралями

Методы анализа

- Автоматический мессбауэровский спектрометр CM-2201 в режиме постоянного ускорения. Источник γ-квантов – ⁵⁷Co в Rh
- D8 Discover X-ray дифрактометр в Cu излучении с графитовым монохроматором на дифрагированном пучке
- Tecnai G² 30 Twin просвечивающий электронный микроскоп

Результаты рентгеноструктурного анализа образцов сплава Fe - 6,29 ат % Mn после различных видов обработки

	α-Fe			
Вид оораоотки	Период, Å	ОКР, нм	$\Delta d/d, \%$	
Холодная деформация	2,874(3)	45(3)	0,36	
Облучение ионами Ar+,				
E = 15 кэВ, $j = 50$ мкА/см ² ,	2,871(3)	92(8)	0,26	
$F = 1,25 \cdot 10^{15} \text{ cm}^{-2} (4 \text{ c}), T = 299 ^{\circ}\text{C}$				
Нагрев нагревателем до <i>T</i> = 313 °C за <i>t</i> = 4 с	2,871(3)	61(4)	0,29	

Мессбауэровские спектры сплава Fe – 6,29 ат. % Мп в исходном состоянии (а), после нагрева бесконтактным нагревателем (T = 313 °C) (б) и после облучения пучком ионов аргона: E = 15 кэB, j = 50 мкA/см², $F = 1,2 \cdot 10^{15}$ см⁻² (нагрев до T = 299 °C) (в)

Значения параметра ближнего порядка по Каули (α), полученные в результате обработки мессбауэровских спектров, при различных режимах облучения и нагрева образцов холоднодеформированного сплава Fe - 7,85 ат. % Мп

№ образца	Метод воздействия	T _{max} , °C	Количество операций нагрева (облучения)	Флюенс <i>F</i> , см ⁻² , и общее время всех операций (с)	Параметр ближнего порядка по Каули (а)
1	Холодная прокатка				0,00
2	Нагрев с помощью нагревателя	253	4	- (72)	0,03
3	Облучение и нагрев	153	1	3,75·10 ¹⁵ (3)	0,08
4	пучком ионов Ar+,	217	5	$1,87 \cdot 10^{16} (15)$	0,09
5	<i>E</i> = 15 кэВ	200	10	$3,75 \cdot 10^{16} (30)$	0,10

Кривые нагрев/охлаждение образцов сплава Fe – 6,35 ат. % Мn под воздействием

Процесс мессбауэровского анализа

З зеемановских секстета

с – предполагаемая концентрация

 $n_{
m Fe}^1,\,n_{
m Fe}^2$ и lpha из спектра $n_{
m Fe}^2+n_{
m Fe}^1=1$ $0\leqlpha\leq 1$

 $c_1 = c(1 - \alpha)$

$$c_2 = \frac{n_{\rm Fe}^1 c_1 (1-c) - c(1-c_1)}{n_{\rm Fe}^1 (1-c) - (1-c_1)}$$

Температуры (в диапазоне 300-450 °C) максимального нагрева образца сплава Fe – 6,35 ат. % Мn в ходе ионной имплантации и рассчитанные значения ⁵⁷Fe в α фазе, а также концентраций Mn в α и γ фазах

Предельная температура нагрева образцов в ходе ионного облучения: $T_{\rm max,}$ °C	Концентрация атомов резонантного изотопа в α-фазе (от общего количества): n ¹ _{Fe}	Концентрация марганца в α-фазе: c ₁ , ат. %	Концентрация марганца в ү-фазе: c ₂ , ат. %
311	0,030	4,8	38,0
378	0,036	5,2	29,8
449	0,044	5,4	23,8

Фрагмент равновесной фазовой диаграммы железо-марганец

О.А. Банных, П.Б. Будберг, С.П. Алисова, Фазовые диаграммы состояний бинарных и многокомпонентных систем, на основе железа, Металлургия, Москва, 1986.

• – рассчитанные значения предельной растворимости

Микроструктура сплава Fe-6,35 ат.% Мп в исходном холоднодеформированном состоянии

Микроструктура сплава Fe-6,35 ат. % Мп после облучения ионами Ar⁺ с нагревом мишени до 311 °C

Мессбауэровские спектры сплавов Fe – 4,10 и 7,25 ат.% Мп и расчетные распределения эффективных магнитных полей *P*(*H*) в а-фазе

Результаты анализа мессбауэровских спектров сплава Fe – 7,25 ат.% Мп после различных видов обработки

Обработка	W(0)	W(1)	W(2)	$S_{\alpha} \sim n_{Fe}^{1}$	$S_{\alpha} \sim n_{Fe}^2$	c* (c ₁)	<i>C</i> ₂	α_1 (α_{1max})	<h></h>
Закалка	0,555	0,339	0,091	1,00	0,00	0,0711		0,02	317
Закалка + облучение	0,558	0,338	0,089	1,00	0,00	0,0703		0,03	317
Закалка + СД + облучение	0,624	0,303	0,064	0,969	0,031	(0,0573)	38.4	(0,21)*	320
Закалка + СД * В момент. пре	0,562 лшествун	0,336	0,088 мировани	1,00 но гамма-ф	0,00	0,0696		0,04	318

Распространение посткаскадной волны в метастабильной среде: $\varepsilon_0 < \Delta f < \varepsilon^*$ (а) и при $\Delta f \le \varepsilon_0 < \varepsilon^*$ (б)

Выводы

- Холоднодеформированный сплав Fe 6,29 ат. % Мп в течение нескольких секунд может быть переведён в двухфазное (α + γ) состояние в результате воздействия на него пучка ионов аргона (E = 15 кэВ) при T ≤ 299 °C. Этого не происходит при нагреве сплава до 313 °C, в отсутствие облучения.
- Кратковременное облучение сплава Fe 6,35 ат. % Мn, ускоренными ионами Ar⁺ (E = 15 кэВ) также привело к формированию в нем двухфазного состояния с образованием обедненной марганцем α-фазы и γ-фазы, многократно обогащенной марганцем при аномально низких температурах для термически активируемых процессов.
- Влияние ускоренных ионов на сплавы: Fe с 4,10 и 7,25 ат. % Мп существенно зависит от их термодинамической стабильности, определяемой концентрацией марганца и структурным состоянием, сформированным в результате предшествующих обработок. Это влияет на соотношение описанных параметров ε0, Δf и ε*, которые определяют результат радиационно-динамического воздействия посткаскадных волн.

Высокая скорость превращения указывает на инициирование гигантской низкотемпературной подвижности атомов. Механизм каскадной радиационной тряски может быть использован для получения термически недостижимых состояний облучаемых сред. Выражаю благодарность:

- Махинько Ф.Ф. за проведение облучения ионами,
- Семенкину В.А. за проведение мессбауэровского анализа,
- Медведеву А.И. за проведение рентгеноструктурного анализа,
- Курановой Н.Н., Макарову В.В. за проведение микроскопических исследований,
- Гущиной Н.В. за помощь с планированием, обсуждением и описанием результатов эксперимента.

Данная работа была выполнена при поддержке Российского научного фонда, проект номер 19-79-20173.