

Исследование кинетики импульсной катодолюминесценции в активированных керамиках на основе иттрийалюминиевого граната

Выпускная квалификационная работа

Аспирант: А.С. Макарова

Лаборатория квантовой электроники

Научный руководитель: <u>В.И. Соломонов</u>, д.ф.-м.н., в.н.с.

Введение

<u>Объекты исследования</u>: керамики Nd: $Y_3Al_5O_{12}$ и Yb: $Y_3Al_5O_{12}$ (представляют интерес для лазеров, работающих в ИК диапазоне) и Ce: $Y_3Al_5O_{12}$ (сцинтилляторы с коротким временем релаксации излучения).

<u>Цель данной работы</u>: исследование особенностей спектров и кинетики полос ИКЛ керамик на основе иттрий-алюминииевого граната, активированных ионами редкоземельных элементов (неодим, иттербий, церий).

<u>Актуальность темы исследования</u>: возможности создания неразрушающего люминесцентного анализа твердых тел диэлектрического и полупроводникового типов с целью их идентификации, определения фазового состава и состава примесных ионов, а также их структурного совершенства (несовершенства).

<u>Научная новизна</u>: Получение новых знаний о процессах возбуждения энергетических уровней центров люминесценции, а также электронных и дырочных центров, о механизмах разгорания и затухания импульсной катодолюминесценции.

Блок-схема экспериментальной установки

Параметры работы установки

Средняя энергия электронов	170 кэВ;
Длительность импульса	2 нс;
Плотность тока	130 А/см ² ;
Спектральный диапазон работ ФЭУ	200-1200 нм;
Спектральный диапазон работы спектрометра	450-900 нм.

Измерения проводились в воздухе при комнатной температуре образцов.

Обработка сигналов, полученных при нелинейном токовом режиме работы ФЭУ*

Импульсная катодолюминесценция Nd:ИАГ

Кинетика полос ИКЛ иона Nd^{3+} в ИАГ

Кинетика полос ИКЛ иона Nd³⁺ в ИАГ

Группа полос	Аппроксимационная кривая	Характерные времена	
Ι	$I_{a}(t) = A a^{-t/\tau} d_{1}$	τ _{d1} = 3,5 мкс	
II	$I_p(t) = Ae^{-t/at}$	τ _{d1} = 6,4 мкс	
III	$I_p(t) = Ae^{-t/\tau_{d_1}} + B(e^{-(t-t_0)/\tau_{d_2}} - e^{-(t-t_0)/\tau_{r_2}})$	$\tau_{d1} = 1,6$ мкс; $t_0 = 4$ мкс; $\tau_{r2} = 0,7$ мкс; $\tau_{d2} = 7,9$ мкс	
IV	$I_p(t) = Ae^{-t/\tau_{d1}} + Be^{-t/\tau_{d2}}$	$\tau_{d1} = 64,7$ мкс; $\tau_{d2} = 251,8$ мкс	

ИКЛ керамик Nd:ИАГ

1. В системе энергетических уровней иона неодима в ИАГ имеются два излучательных уровня ${}^{2}F2_{5/2}$ и ${}^{4}F_{3/2}$, расщепленные на штарковские компоненты. Оптические переходы с уровня ${}^{2}F2_{5/2}$ проявляются в УФ и видимой области спектра, а с уровня ${}^{4}F_{3/2}$ – в ближней инфракрасной области.

Кинетика полос ИКЛ 2. ИАГ, неодима В соответствующих переходам С **ДВУХ** НИЖНИХ штарковских компонент v_0 и v_1 уровня ${}^2F2_{5/2}$, характеризуется наличием точки перегиба И появлением второго максимума интенсивности. Появление немонотонности B кинетических кривых полос ИКЛ определяется механизмом подкачки излучательного уровня.

Импульсная катодолюминесценция Уb:ИАГ

Кинетика полос ИКЛ керамик Үb:ИАГ

Интерпретация характерных времен затухания линий на *d-s* переходах иона Yb²⁺ в области 580-720 нм:

 τ_{d1} – время жизни излучательного уровня и
она Yb^{2+}

 τ_{d2} — время жизни метастабильного уровня и
она $Yb^{2+},\,\,c\,$ которого происходит подкачка излучательного уровня

Интерпретация характерных времен затухания ик линии:

При фотовозбуждении спад кривой люминесценции в ИК диапазоне описывается одноэкспоненциальной функцией с $\tau_d = 1,38$ мс.

 τ_{d1} — время образования и
она Yb^{2+} в реакции (*) или время жизни излучательного уровня и
она Yb^{2+}

 τ_{d2} – время жизни излучательного уровня $^2F_{5/2}$ иона Yb^{3+}

Группа полос	Аппроксимация	Характерные времена	
591,0; 596,2; 609,4; 630,7; 710,0		$\tau_{d1} = 5,2$ мкс; $\tau_{d2} = 2,33$ мс	
689,0	$I_p(t) = A e^{-t/\tau_{d_1}}$	$\tau_{d1} = 6,0$ мкс; $\tau_{d2} = 1,3$ мс	
696,4	$+Be^{-t/\tau_{d2}}$	$\tau_{d1} = 6,0$ мкс; $\tau_{d2} = 1,7$ мс	
968,3; 979,0; 1005,0; 1029,3		$ \tau_{d1} = 250$ мкс; $\tau_{d2} = 1,4$ мс	

Импульсная катодолюминесценция Уb:ИАГ

- 1. В спектрах ИКЛ керамических образцов иттрий-алюминиевого граната, активированных иттербием, проявляются полосы центров люминесценции разной природы. Помимо люминесценции ионов Yb³⁺ в ИК-области спектра надежно выявлены узкие линии при 591,0, 596,2, 609,4, 630,7, 689,0, 696,4 и 710,0 излучение иона Yb²⁺, формируемого в результате захвата возбужденным ионом Yb³⁺ электрона из зоны проводимости, или излучение неконтролируемой примеси Eu³⁺ малой концентрации.
- 2. Кинетика полос при 689,0 и 696,4 нм искажается за счет влияния излучения ионов Cr³⁺, а полос в ИК диапазоне присутствием введенной на этапе синтеза керамик примеси ионов Nd³⁺.

Импульсная катодолюминесценция Се:ИАГ

Импульсная катодолюминесценция Се:ИАГ

Начальный этап (0-1 мкс): возбуждение излучательного уровня церия осуществляется в результате релаксации энергии быстрых вторичных электронов, а кинетика полосы при $\lambda = 570$ нм должна описываться кинетическим уравнением:

Описывает «прямое» возбуждение излучательного уровня иона церия электронами

Описывает возбуждение излучательного уровня иона церия путем передачи энергии с других дефектов.

 τ_l – характерное время процесса; I_l – амплитуда Описывает девозбуждение излучательного уровня в процессах ферстеровской кинетики с τ_s и τ_f – характерными временами процессов спонтанного излучения и ферстеровского тушения, соответственно.

Второй этап (t > 1 мкс): доминирующим механизмом возбуждения излучательного уровня становится рекомбинация локализованных на ионах Се³⁺ электронов существу представляющих собой И дырок, ПО ионы Ce²⁺ и Ce⁴⁺, короткоживущие а кинетика описывается уравнением:

Описывает возбуждение излучательного уровня иона церия в процессе рекомбинации локализованных на ионах Ce^{3+} электронов и дырок. β_r – коэффициент рекомбинации ионов Ce^{2+} и Ce^{4+} ; $[Ce^{2+}]$ – концентрация двухвалентного иона церия; $[Ce^{4+}]$ – концентрация четырехвалентного иона церия.

Описывает девозбуждение излучательного уровня в процессах ферстеровской кинетики с τ_s и τ_f – характерными временами процессов спонтанного излучения и ферстеровского тушения, соответственно.

Характерные времена люминесценции полосы ионов Се³⁺ при 570 нм

Ceria content in the sample, mol.%	Characteristic time of spontaneous emission τ_s , ns	Characteristic time of Förster quenching τ_{f} , ns	Recombination time of electrons and holes localized on Ce ³⁺ ions, µs
0.1	100	12	38.8
0.5	100	6900	74.1
1.0	110	346	64.2
2.0	103	11100	67.2
3.0	110	309	70.8
4.0	100	28	47.9
5.0	90	25	36.0

Путем интегрирования кинетических кривых проведена оценка долей светосумм ближней (наносекундной 0-1 мкс) и дальней (микросекундной 1-80 мкс) стадий люминесценции в полосе при 570 нм. Они составляют приблизительно 0.4 и 0.6 от общей светосуммы соответственно.

1. В кинетике полосы ИКЛ при 570 нм d-f перехода иона Ce³⁺ в иттрийалюминиевом гранате, кроме максимума интенсивности в наносекундном диапазоне времени с быстрым спадом, обнаружен дополнительный максимум интенсивности при 1,3 мкс:

Показано, что на начальной стадии, совпадающей по времени с длительностью электронного пучка, возбуждение излучательного уровня церия осуществляется в результате релаксации энергии быстрых вторичных электронов. На второй стадии доминирующим механизмом возбуждения излучательного уровня становится рекомбинация ионов Ce^{2+} и Ce^{4+} , образующихся в результате локализации медленных свободных электронов и дырок на ионах Ce^{3+} , вследствие чего возникает второй максимум интенсивности.

2. Доля светосумм ближней и дальней временных стадий люминесценции составляют 0,4 и 0,6 от общей светосуммы. Это является причиной относительно низкого световыхода сцинтилляций Се:ИАГ в наносекундном диапазоне.

Заключение

- 1. Представлена методика измерения кинетики слабых световых сигналов в токовом режиме работы фотоэлектронного умножителя при его нагрузке на мегаомный вход цифрового осциллографа. Регистрируется сигнал напряжения, представляющий собой свертку фототока и аппаратной функции измерительной цепи. Реальное поведение фототока от времени определяется путем деконволюции измеренного сигнала.
- 2. В системе энергетических уровней иона неодима в ИАГ имеются два излучательных уровня ${}^{2}F2_{5/2}$ и ${}^{4}F_{3/2}$, расщепленные на штарковские компоненты. Оптические переходы с уровня ${}^{2}F2_{5/2}$ проявляются в УФ и видимой области спектра, а с уровня ${}^{4}F_{3/2}$ в ближней инфракрасной области.
- 3. Кинетика ИКЛ полос неодима в ИАГ, соответствующих переходам с двух нижних штарковских компонент v_0 и v_1 уровня ${}^2\text{F2}_{5/2}$, характеризуется наличием точки перегиба и появлением второго максимума интенсивности. Появление немонотонности в кинетических кривых полос ИКЛ определяется механизмом подкачки излучательного уровня.

Заключение

- 4. В спектрах ИКЛ керамических образцов иттрий-алюминиевого граната, активированных иттербием, проявляются полосы центров люминесценции разной природы. Помимо люминесценции ионов Yb³⁺ в ИК-области спектра надежно выявлены узкие линии при 591,0, 596,2, 609,4, 630,7, 689,0, 696,4 и 710,0 нм излучение иона Yb²⁺, формируемого в результате захвата возбужденным ионом Yb³⁺ электрона из зоны проводимости, или излучение неконтролируемой примеси Eu³⁺ малой концентрации.
 - 5. Кинетика полос при 689,0 и 696,4 нм искажается за счет влияния излучения ионов Cr³⁺, а полос в ИК диапазоне присутствием введенной на этапе синтеза керамик примеси ионов Nd³⁺.

Заключение

- 6. В кинетике полосы ИКЛ при 570 нм *d-f* перехода иона Ce³⁺ в иттрий-алюминиевом гранате, кроме максимума интенсивности в наносекундном диапазоне времени с быстрым спадом, обнаружен дополнительный максимум интенсивности при 1,3 мкс: Показано, что на начальной стадии, совпадающей по времени с длительностью электронного пучка, возбуждение излучательного уровня церия осуществляется в результате релаксации энергии быстрых вторичных электронов. На второй стадии доминирующим механизмом возбуждения излучательного уровня становится рекомбинация ионов Ce²⁺ и Ce⁴⁺, образующихся в результате локализации медленных свободных электронов и дырок на ионах Ce³⁺, вследствие чего возникает второй максимум интенсивности.
- 7. Доля светосумм ближней и дальней временных стадий люминесценции составляют 0,4 и 0,6 от общей светосуммы. Это является причиной относительно низкого световыхода сцинтилляций Се:ИАГ в наносекундном диапазоне.

На спектральные и кинетические характеристики импульсной катодолюминесценции существенное влияние оказывают неконтролируемые примеси редкоземельных элементов с содержанием порядка 1 ppm, не учет которых может приводить к неправильной интерпретации результатов.

Метод ИКЛ позволяет проводить исследования составов вещества, в частности экспрессное определение наличия неконтролируемых примесей.

Спасибо за внимание!