Влияние плотных подслоев на электродные характеристики системы La(Sr)Fe(Ga)O₃ - La(Sr)Ga(Mg)O₃

01.04.07 – Физика конденсированного состояния

Павздерин Никита Борисович

Научный руководитель: к.т.н., с.н.с. ЛПЭ ИЭФ УрО РАН **Никонов Алексей Викторович** Научный консультант: д.х.н., г.н.с. ЛЭМ ИВТЭ УрО РАН **Шкерин Сергей Николаевич**

Екатеринбург, 2021

Актуальность темы исследования

Принцип работы ТОТЭ $E = E_{OCV} - I \cdot R_{_{BHVM}}$ Н2, Н20 Вкамер топлив $E_{OCV} = E^0 - \frac{RT}{2F} \ln \frac{P_{H_2O}}{P_{H_1} P_{O_1}^{1/2}}$, MAR H, O Анод внешняя Электролит нагрузка $R_{_{GHVM}} = R_{_{OM}} + R_n + R_{_{\partial u}db}$ Катод $R_{OM} = R_{3nekmponumm} + R_{kamod} + R_{ahod}$ окислител выход катодных $R_{OM} = \rho \frac{\iota}{S}$ 🛛 О., ИЛИ ВОЭД 🛛 0,, N, $\rho_{_{_{_{3лектролит}}}} \propto \exp(\frac{E_{_{aкm}}}{kT})$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $\frac{1}{2}O_{2}+2e^{-} \rightarrow O^{2-}$ Катод: $ASR = R \cdot S = \rho \cdot \delta$ $H_{2}+O^{2-} \rightarrow H_{2}O+2e^{-}$ Анод:

Плотность тока (j), А/см²

 $R_{\eta} = R_{\eta(\kappa a mod)} + R_{\eta(a Hod)}$ $R_{\eta} = R_{chem} = \frac{RT}{2F^2} \sqrt{\frac{\tau}{(1-\varepsilon)aC_0^2 D * k}}$

т – извилистость пор

є – пористость

а – удельная площадь поверхности

С₀ — концентрация кислородных вакансий

D* – коэф. самодиффузии кислорода

k – коэф. поверхностного обмена

Стратегии уменьшения внутренних потерь ТОТЭ:

Формирование плотного подслоя со смешанной проводимостью на границе электролитпористый катод улучшает перенос ионов кислорода между катодом и электролитом.

- материал с кислород-ионной проводимостью (электролит)
- материал с электронной проводимостью
- материал со смешанной ион-электронной проводимостью
- поток электронов
- 🖛 поток ионов кислорода
- 🗰 места протекания реакции восстановления кислорода

В настоящее время в ТОТЭ в качестве катодов чаще используются пористые слои композитного материала или материала со смешанной ион-электронной проводимостью. Основным методом улучшения их характеристик является расширении трехфазной границы за счет оптимизации микроструктуры.

перовскитных материалов и их КТР

Цель работы

Модификация катодного слоя LSFG на границе электролит – катод, для улучшения характеристик электрохимических устройств.

Задачи

- 1. Методом магнетронного распыления отработать получение:
 - плотных подслоев LSFG на поверхности твердого электролита LSGM;
 - тонкого плотного слоя электролита LSGM на поверхности композитного электрода LSFG/LSGM (2:1);
 - плотных чередующихся слоев LSFG/LSGM/LSFG на поверхности твердого электролита.
- 2. Отработать получение многослойной беспористой структуры электрод LSGM композитный электрод LSGM:LSFG 1:2 методом совместного спекания.
- 3. Исследовать влияние плотных слоев на характеристики катодов LSFG.

Исходные порошки:

Материал	Обозначение	Пр-ная группа	Параметр решетки, Å	Υ _{xrd} , r/cm ³
$La_{0.88}Sr_{0.12}Ga_{0.82}Mg_{0.18}O_{3-\delta}$	LSGM-1218	R-3c	a=5,522 c=13,465	6,68
$La_{0.4}Sr_{0.6}Fe_{0.95}Ga_{0.05}O_{3-\delta}$	LSFG-6005	R-3c	a=5,497 c=13,443	6,02
$La_{0.5}Sr_{0.5}Fe_{0.93}Ga_{0.07}O_{3-\delta}$	LSFG-5007	R-3c	a=5,511 c=13,415	6,16
La _{0,7} Sr _{0,3} Fe _{0,95} Ga _{0,05} O _{3-δ}	LSFG-7005	R-3c	a=5,510 c=13,424	6,147
$La_{0,85}Sr_{0,15}Ga_{0,75}Mg_{0,25}O_{3-\delta}$	LSGM-1525	Pm-3m	a = 3,918	6,56

Нанесение покрытий методом магнетронного распыления

•Без дополнительного нагрева.

•Расстояние от мишени до подложки 120 мм.

•Режимы: постоянного тока / высокочастотный.

В атмосфере аргона (расход – 1.8 л/ч при давлении 0.32 Па) или кислород-аргоновой смеси (расход – 1.8 л/ч для Ar и 0.9 л/ч для O₂ при давлении 0.37 Па).

 В пробных экспериментах для подбора параметров напыления в качестве подложек использовали кремниевые пластины.

Плотность мощности разряда составила 7 Вт/см².
Мощность источника питания от 200 до 300 Вт (RF)
Скорость напыления:

Высокочастотный в Ar ~ 1,6 и в Ar-O₂ ~ 0,7 нм/мин.

Постоянный ток в Ar для LSFG-6005 ~ 26 нм/мин, для LSFG-5007 ~ 14 нм/мин. В Ar-O₂ ~ 8-9 нм/мин.

Исследование электродных подслоев

Рентгенофазовый анализ покрытий

Ga

0.33

0.23

0.22

0.1

0.09

0.09

Исследование слоя электролита

Рентгенофазовый анализ покрытий

Элементный состав покрытий

Отношение А-катиона в покрытии к их количеству в мишени составляет 1,07 и 0.6 для La и Sr Отношение Ga и Mg - 1.19 и 0.44.

Материал		Состав покрытия						
		La	Sr	Fe	Ga			
	LSGM- 1525	0.91	0.09	0.89	0.11			
олщина	500 нм LS	LSGN FG:LSGN				サイラストリートを入れてい		
6/26/2020 det	HV WD mag tilt	5 µm	- 6/26/2020 det 9:23:12 AM ETD 10.	HV WD mag t 00 kV 14.5 mm 5000 x -0	ilt 20 μm			

Вывод № 1

- В ходе работы было исследовано получение плотных катодных слоев LSFG с толщиной от 200 до 2500 нм и электролитных слоев LSGM с толщиной 250, 500 и 1100 нм методом магнетронного распыления в режиме постоянного тока и высокочастотном режиме, соответственно.
- Исследовано влияние режимов работы магнетронной распылительной системы, параметров осаждения и параметров исходной мишени на морфологию поверхности, микроструктуру и фазовый состав формируемых плотных слоев, а также исследован элементный состав полученных покрытий.
- Сформированы многослойные катодные покрытия, состоящие из чередующихся слоев LSFG/LSGM/LSFG. Слои нанесены последовательно в режимах, отработанных ранее для каждого материала. Был сформирован ряд многослойных покрытий отличающихся толщиной слоев (50, 100 и 250 нм) и их количеством (3 и 5).

N.B. Pavzderin, A.A. Solovyev, A.V. Nikonov, A.V. Shipilova, S.V. Rabotkin, V.A. Semenov, A.S. Grenaderov, K.V. Oskomov /Formation of a dense La(Sr)Fe(Ga)O₃ Interlayer at the electrolyte/porous cathode interface by magnetron sputtering and its effect on the cathode characteristics // Russian journal of electrochemistry, 2021, V.57, №5, p. 519-525.

Заявка № 2021113928 Российская Федерация, МПК Н01М 8/10, Н01М 8/12, Н01М 8/22, В32В 18/00. Структура активной части элементов твердооксидных устройств с плотным электродным текстурированным слоем (варианты) : 18.05.2021 / Никонов А.В., Павздерин Н.Б. — 13с. : Ил.

Исходные материалы

Получены методом самораспространяющегося высокотемпературного синтеза

Исследование кинетики спекания

$La_{0.88}Sr_{0.12}Ga_{0.82}Mg_{0.18}O_{2.85}$

 $La_{0.3}Sr_{0.7}Fe_{0.6}Ga_{0.4}O_{3-\delta}$

Дилатометрические кривые порошков для совместного спекания LSGM и LSFG:LSGM=2:1

Изготовление образцов

Стадии изготовления:

- Получение шликера
- Литье пленки
- Прессование

Диски диаметром 15 мм, в количестве 4 штук для LSGM и 24 при давлении 300 МПа

• Совместное спекание

Нагрев со скоростью 0,5 °С/мин до 600 °С, затем 5 °С/мин до 1250 °С с выдержкой 20 часов.

Результат спекания при 1300 °С

Вывод № 2

Реализована новая структура катода ТОТЭ.

•Дилатометрическим методом было определено, что кривые усадки для

электролита LSGM и композита LSGM-LSFG (1:2) совпадают вплоть до

температуры 1350°С. Однако бездефектные пленочные образцы LSGM-

LSFG // LSGM // LSGM-LSFG совместным спеканием получались при

температурах не выше 1250°С.

A. V. Nikonov, N. B. Pavzderin, S. N. Shkerin, O. I. Gyrdasova and A. S. Lipilin / Fabrication of multilayer ceramic structure for fuel cell with $La(Sr)Ga(Mg)O_3 - La(Sr)Fe(Ga)O_3$ cathode / Russian Journal Of Applied Chemistry, 2017, vol. 90, no. 3, pp. 369–373.

Метод импедансной спектроскопии

14

14 - трубчатая печь, 15 – блок управления печью

Исследование симметричных образцов

Формирование плотного подслоя со смешанной ион-электронной проводимостью на границе пористый электрод/электролит облегчает перенос ионов О²⁻

Слой, нм T, °C	200	400	600	800	2500	50/50/50	100/100/100	250/250/250	100/100/100/100/100	50/100/300/100/300
800	38	-6	64	76	2	-58	-76	47	15	52
650	52	-5	59	75	-21	-66	-28	42	-4	28

Данные для композита

Сравнение результатов

с литературными данными при 800 °С

Электрод	R _η , Om*cm²	Электрод LSFG	R _η , Om*cm²
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	0,04	пористый	0,27
La _{0.6} Sr _{0.3} CoO ₃	0,08	композит	0,14
YBaCo _{3.2} Fe _{0.8} O _{7+δ}	0,11	800	0,06
$Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$	0,18	600	0,10
$Sr_{0.9}K_{0.1}FeO_{3-\delta}$	0,20	50/100/300/100/300	0,13
$La_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	0,23	250/250/250	0,14
$Sm_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	0,26	200	0,17
$La_2Ni_{0.9}Co_{0.1}O_4$	0,73	100/100/100/10 0	0,23
$La_4Ni_3O_{10}$	1,18	2500	0,27
La ₂ Ni _{0.6} Cu _{0.4} O ₄	1,38	400	0,29
$La_3Ni_2O_7$	1,58	50/50/50	0,43
		100/100/100	0,48

Источники: Pena-Martinez J Electrochimica Acta, V. 52, 2007, p. 2950–2958 Amow G., // Journal of Solid State Electrochemistry, V. 10, 2006, p. 538–546 Aguadero A., // Solid State Ionics, V. 179, 2008, p. 393–400 Hou S., // Journal of Power Sources, V. 195, 2010, p. 280–284 Inagaki T., // Journal of Power Sources, V. 86, 2000, p. 347–351 Tsipis E.V., // Journal of Solid State Electrochemistry, V. 15, 2011, p. 1007-1040

Температурная зависимость поляризационного сопротивления

Зависимость поляризационного сопротивления от парциального давления кислорода

Значение n	Лимитирующая стадия
1	диффузия кислорода в газовой фазе
1/2	электродный процесс адсорбция и диссоциация кислорода на поверхности электрода
1⁄4	перенос заряда через границу газ-электрод

Источник: Takeda Y.// Journal of Electrochemical Society, V. 134, 1987, p. 2656–2661

$$R_\eta \propto p_{o_2}^{-n}$$

Вывод № 3

- Исследование электрохимических характеристик пористых электродов La_{0.7}Sr_{0.3}Fe_{0.95}Ga_{0.05}O_{3-δ} с и без плотных подслоев, сформированных методом магнетронного распыления, показали, что введение подслоев позволяет снизить поляризационное сопротивление в 4,5 раза за счет облегчения перехода ионов O²⁻ через границу электрод-электролит. Однако при определенных толщинах наблюдается ухудшение, характеристик.
- Определены, поляризационные сопротивления катода с плотными подслоями при 800 °C, 800 нм 0,06 Ом*см², 600 нм 0,1 Ом*см², 50/100/300/100/300 нм 0,13 Ом*см², 250/250/250 нм 0,14 Ом*см².
- Определена лимитирующая стадия электродного процесса для композита перенос заряда через границу газэлектрод.
- Определено, что при 800 °С поляризационное сопротивление катода LSGM-LSFG в контакте с электролитом LSGM составляет 0,14 Ом*см².
- N.B. Pavzderin, A.A. Solovyev, A.V. Nikonov, A.V. Shipilova, S.V. Rabotkin, V.A. Semenov, A.S. Grenaderov, K.V. Oskomov /Formation of a dense La(Sr)Fe(Ga)O₃ Interlayer at the electrolyte/porous cathode interface by magnetron sputtering and its effect on the cathode characteristics // Russian journal of electrochemistry, 2021, V.57, №5, p. 519-525.
- A. V. Nikonov, N. B. Pavzderin, S. N. Shkerin, O. I. Gyrdasova and A. S. Lipilin / Fabrication of multilayer ceramic structure for fuel cell with La(Sr)Ga(Mg)O₃-La(Sr)Fe(Ga)O₃ cathode / Russian Journal Of Applied Chemistry, 2017, vol. 90, no. 3, pp. 369-373.

Публикации по теме НКР

По теме диссертации опубликовано 14 печатных работ, из них 3— в рецензируемых научных журналах, 10— в сборниках трудов конференций, 1— заявка на патент

- 1. A.V. Nikonov, K.A. Kuterbekov, K.Zh. Bekmyrza, N.B. Pavzderin. Eurasian Journal of Physics and Functional Materials 2018, V. 2, № 3, pp. 274–292.
- 2. A. V. Nikonov, N. B. Pavzderin, S. N. Shkerin, O. I. Gyrdasova, and A. S. Lipilin. Russian Journal of Applied Chemistry, 2017, V. 90, № 3, pp. 369–373.
- 3. N.B. Pavzderin, A.A. Solovyev, A.V. Nikonov, A.V. Shipilova, S.V. Rabotkin, V.A. Semenov, A.S. Grenaderov, K.V. Oskomov. Russian Journal of Electrochemistry, 2021, V.57, №5, p. 519–525.

Заявка на патент:

Заявка № 2021113928 Российская Федерация, МПК Н01М 8/10, Н01М 8/12, Н01М 8/22, В32В 18/00. Структура активной части элементов твердооксидных устройств с плотным электродным текстурированным слоем (варианты) : 18.05.2021 / Никонов А.В., Павздерин Н.Б. — 13с. : ил.

Апробация результатов работы

Основные результаты докладывались на следующих научных мероприятиях:

- IV, V, VI, VII, VIII Всероссийские конференции с международным участием «Топливные элементы и энергоустановки на их основе», г. Суздаль, г. Черноголовка, Россия, 2017 -2021 гг.
- 2. XIX, XX, XXI, XXII Конференции молодых ученых ИЭФ УрО РАН. г. Екатеринбург, Россия. 2017 2019, 2021 гг.
- 3. XXVIII Российская молодежная научная конференция с международным участием «Проблемы теоретической и экспериментальной химии», Екатеринбург, Россия, 2018 г.
- 4. Международный форум молодых ученых «BURABAY FORUM: приграничное сотрудничество Казахстана», г. Нур-Султан, Казахстан, 2018 г.
- 5. VI Международная молодежная научная конференция «Физика. Технологии. Инновации», г. Екатеринбург, Россия, 2019 г.

Благодарности

Автор выражает глубокую благодарность научному руководителю Никонову А.В. За постоянное внимание к работе и введение в актуальное научное состояние. Автор благодарит:

коллектив Лаборатории прикладной электродинамики ИЭФ УрО РАН;

коллектив Лаборатории прикладной электроники ИСЭ СО РАН и лично заведущего

лаборатории Соловьева А.А.; Шкерина С.Н. ИВТЭ УрО РАН; Гырдасову О.И. ИХТТ УрО РАН; всех сотрудников ИЭФ УрО РАН.

Влияние плотных подслоев на электродные характеристики системы La(Sr)Fe(Ga)O₃ - La(Sr)Ga(Mg)O₃

01.04.07 – Физика конденсированного состояния

Павздерин Никита Борисович

Научный руководитель: к.т.н., с.н.с. ЛПЭ ИЭФ УрО РАН **Никонов Алексей Викторович** Научный консультант: д.х.н., г.н.с. ЛЭМ ИВТЭ УрО РАН **Шкерин Сергей Николаевич**

Екатеринбург, 2021