

Тема доклада:

Исследование влияния параметров разряда с самонакаливаемым полым катодом и секционным анодом на степень активации компонентов парогазовой среды для получения SiAICN и SiAICO покрытий

Докладчик: Брюханова Юлия Андреевна (аспирант 3 года обучения)

Руководитель: Меньшаков Андрей Игоревич (к.т.н., с.н.с. ЛПЧ)

Екатеринбург, 2024 г.

Покрытия на основе Si-Al-C-N

Основные свойства:

- аномальная стойкости к окислению в широком диапазоне температур вплоть до 1400 °С
- термостойкость
- высокая твёрдость
- износостойкость

Области применения:

для защиты компонентов, подвергающихся износу в условиях повышенных температур и агрессивных средах:

- в авиакосмической технике
- в машиностроении

Покрытия на основе Si-Al-C-O

Основные свойства:

- стойкость к окислению и эрозии
- термостойкость
- износостойкость
- пьезоэлектрические свойства

Области применения:

для создания высокотемпературных датчиков:

- в газотурбинных двигателях
- в ядерных реакторах

Основные методы получения Si-Al-C-N и Si-Al-C-O:

Термические методы разложения жидких прекурсоров Недостатки:

- высокая стоимость
- использование вредных химических соединений
- требует высоких температур синтеза
- невозможность в реальном времени изменять условия синтеза для получения покрытий нужного состава
- не удовлетворяет требования по экологичности

Альтернативный метод получения Si-Al-C-N и Si-Al-C-O

Плазмохимическое осаждение из газовой фазы PECVD (Plasma-enhanced chemical vapor deposition) Достоинства:

- высокая производительность
- безопасность
- доступность материалов
- возможность изменения в широком диапазоне условий синтеза для создания покрытий с нужным составом

Цель

Изучение влияния параметров газоразрядной системы на степень активации парогазовых компонентов дуговой плазмы для получения SiAICN и SiAICO покрытий, в том числе оценка степени разложения кремнийорганических прекурсоров и степени диссоциации реактивных газов N₂ и O₂

Задачи

- исследование состава плазмы, содержащей пары металла и продукты разложения кремнийорганических прекурсоров в зависимости от тока основного разряда, тока тигля, потока реактивных газов и прекурсоров
- оценка интенсивности процесса разложения молекул кремнийорганических прекурсоров (гексаметилдисилазана (ГМДС) и тетраэтоксисилана (ТЭОС)) и степеней диссоциации реактивных газов N₂ и O₂ в зависимости от параметров генерации плазмы
- получение пробных SiAICN и SiAICO покрытий в плазме дугового разряда реактивным анодным испарением и разложением кремнийорганических прекурсоров

Методика эксперимента

Рабочие параметры

установки

Рисунок 2. Фото графитового и титанового тиглей

Используемые прекурсоры: гексаметилдисилазан (ГМДС) [(СН3)3 Si]2NH (0 – 2 г/ч), тетраэтоксисилан (ТЭОС) (С2Н5О)4Si (0 – 2 г/ч)

Рабочий диапазон давлений: 0,5 – 1 мТорр

Ток основного разряда: 5 – 30 А

Тока тигля: 1 – 10 А

Самонакаливаемый полый катод (СНПК):

прессованный порошок TiN, внутренний диаметр 6 мм, внешний 10,5 мм, длина 70 мм

Охлаждаемый полый анод: сталь 12Х18Н10Т

Неохлаждаемый анод – тигель: графит (МПГ-7), диаметр выходной апертуры 7 мм; титан (BT1-0), диаметр выходной апертуры 9 мм

Спектральный анализ плазмы

Таблица 1.Спектральные линии элементов для парогазовых смесей Ar+N₂+Al+ГМДС и Ar+O₂+Al+ТЭОС

Элемент	λ, nm	Нижний уровень	Верхний уровень	
Н	656,3	2s	Зр	
С	384,2	2s²2p3p	2s ² 2p(² P° _{1/2})16d	
AI	396,2	3s²3p	3s ² 4s	
Al+	390,1	3s²3p	3p ²	
N	794,8	2s²2p³(²D°)3s	2s ² 2p ³ (² D°)3p	
N ₂ +	391,9	2s²2p³(²D°)3s	2s²2p³(4S°)3p	
N ₂	337,1	С ³ П _u	B³∏ _g	
0	794,8	2s²2p³(²D°)3s	2s ² 2p ³ (² D°)3p	
02	749,4	b¹Σ _g +	X ³ Σ _g -	

(b) Рисунок 3. Спектры оптического излучения дуговой плазмы Ar+N₂+Al+ГМДС (а) и Ar+N₂+Al+ТЭОС (b)

Диссоциация реактивных газов

Степеней диссоциации N₂:

N(N)	I(N)	$(h\nu)(N2) \cdot \sigma(N2) \cdot \tau(N2) \cdot A(N2)$
N(N2)	$\overline{I(N2)}$	$(h\nu)(N) \cdot G(N) \cdot \tau(N) \cdot A(N)$

Степеней диссоциации О₂:

N(0)	<u>I(0)</u>	$(h\nu)(02)\cdot \sigma(02)\cdot \tau(02)\cdot A(02)$
N(02)	$\overline{I(02)}$	$(h\nu)(0) \cdot \mathbf{G}(0) \cdot \mathbf{T}(0) \cdot \mathbf{A}(0)$

Таблица 2. Основные данные, относящиеся к переходам атомов N и O и молекул N₂ и O₂, использованные в расчёте

Сорт частицы	λ, нм	A, C ⁻¹	hv, эВ	τ·10 ⁻⁹ , c	σ, cm²	Α· τ
Ν	746,8	1,96·10 ⁷	11,99	26,3	6,2·10- ¹⁶	
N ₂	337,1		11,1		5,5·10 ⁻¹⁸	0,52
0	794,8	0,58·10 ⁷	12,5	4		
O ₂	749,4		1,63		4,6·10 ⁻¹⁸	0,33

Рисунок 4. Зависимость степеней диссоциации реактивных газов (N₂ и O₂) от тока разряда (I_d), тока тигля (I_{cr}), потока реактивных газов (Q_{N2}/Q_{O2}) и потока прекурсоров (Q_{HMDS}/Q_{TEOS}) в среде Ar+N₂+Al+ГМДС (а) и Ar+O₂+Al+TЭОС (b).

Разложение ГМДС

 $(h\nu)(H) \cdot \sigma(H) \cdot \tau(H) \cdot A(H)$

б – сечений возбуждения энергетического состояния **A** – коэффициент Энштейна

т – время жизни состояния

I(Ar)

hv – энергия перехода

N(Ar)

Таблица 3. Основные данные, относящиеся к переходам атомов H и Ar, использованные в расчёте

Сорт частицы	λ, нм	A, C ⁻¹	hv, эВ	τ·10 ⁻⁹ , c	σ, cm²	
Н	656,3	4,41·10 ⁷	12,09	1,6	9,3·10 ⁻¹⁷	
Ar	811,5	3,3·10 ⁷	13,07	3,1	5·10 ⁻¹⁸	

Рисунок 5. Зависимость отношения концентраций атомов H и Ar (N_{H656}/N_{Ar811}) от тока разряда (I_d) , тока тигля (I_{cr}) , потока реактивных газов (Q_{N2}/Q_{O2}) и потока прекурсоров (Q_{HMDS}/Q_{TEOS}) в среде Ar+N₂+AI+ГМДС

Разложение ТЭОС

Рисунок 6. Зависимость отношения концентраций атомов H и Ar (N_{H656}/N_{Ar811}) от тока разряда (I_d) , тока тигля (I_{cr}) , потока реактивных газов (Q_{N2}/Q_{O2}) и потока прекурсоров (Q_{HMDS}/Q_{TEOS}) в среде Ar+O₂+Al+TЭОС

Получение пробных покрытий на основе Si-Al-C-N

Рисунок 7. Характерные изображения кратера при истирании стальным шариком (а), поперечного скола (b) и поверхности (c) SiAICN покрытия

Структура и состав покрытий на основе Si-Al-C-N

Si, ат. % НV, ГПа V, мкм/ч Образец АІ, ат. % С, ат. % N, ат. % SiCN 35,2 26,2 11,7 15 2,2 3,4 29,9 27,2 9,4 **Siaicn** 28,4 31 1,6 -Si-N 300 (b) 250 - SiAICN Absorbance Units - SiCN 200 AI7C3N3 150 4000 · (a) s ¹⁰⁰ Si-C 3000 -50 Si-C Ч Ч 0 2000 -30 10 20 40 Si-H 20 Degrees ΞŻ 1000 -1000 4000 3000 2000 0 20 40 60 80 ω, cm⁻¹ 20 Dedrees

Таблица 4. Элементный состав покрытий SiCN и SiAICN

Рисунок 8. ИК-спектры SiAICN покрытий

Рисунок 9. Рентгенофазовый анализ SiAICN покрытия

Получение пробных покрытий на основе Si-Al-C-O

Таблица 5. Элементный состав SiAICO покрытий в зависимости от условий синтеза

№ образца	Q ₀₂ , см ³ /мин	I _{cr} , A	Q _{TEOS} , г/ч	U _s , B	Si, ат. %	АІ, ат. %	С, ат. %	О, ат. %	N, ат. %
1	5	5	1	-100	14,3	22,6	11,5	51,1	-
2	0	7	1	0	8,5	39,6	12,2	19,8	19,6
3	10	4	0,5	-100	18,8	22,7	2	54,2	-
4	10	6	0,5	-100	8,6	30,6	5,5	54	

 $I_d = 10 \text{ A}$ $I_{cr} = 6 \text{ A}$ $Q_{O2} = 10 \text{ см}^3/\text{мин}$ $Q_{TEOS} = 0,5 \text{ г/ч}$ $U_s = -100 \text{ B}$

 $I_d = 10 \text{ A}$ $I_{cr} = 4 \text{ A}$ $Q_{O2} = 10 \text{ см}^3/\text{мин}$ $Q_{TEOS} = 0,5 \text{ г/ч}$ $U_s = -100 \text{ B}$

Рисунок 10. СЭМ – изображения SiAICO покрытий

12

Основные результаты

- ✓ Исследован состава плазмы с самонакаливаемым полым катодом и секционным анодом в парогазовой среде, содержащей пары гексаметилдисилазана (ГМДС) и тетраэтоксисилана (ТЭОС) в условиях испарения АI в присутствии реактивных газов № и 0₂; показано, что данная газоразрядная система стабильно функционирует в широком диапазоне изменения токов разряда и парциальных давлений реактивных компонентов.
- ✓ Исследовано влияние токов разряда, а также состава парогазовой среды на степень разложения ГМДС и ТЭОС, а также степень диссоциации N₂ и O₂: показано, что в дуговом разряде достигается как высокие степени диссоциации как N₂ до 6 %, так и O₂ до 45 %, так и высокая степень активации ГМДС, так и ТЭОС; обеспечение высокой эффективности активации реактивных компонентов в широких диапазонах условий синтеза позволит получать покрытий с нужными химическим составом и набором свойств
- ✓ Получены пробные SiAICN и SiAICO покрытия в плазме дугового разряда реактивным анодным испарением и разложением кремнийорганических прекурсоров с однородной структурой с хорошей адгезией на металлической подложке; показано влияние параметров осаждения на химический состав получаемых покрытий.

Спасибо за внимание!