

23-я Конференция молодых ученых ИЭФ УрО РАН

## Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности

Зайцев Е.Ю.\*, Спирин А.В., Крутиков В.И., Заяц С.В., Паранин С.Н., Кайгородов А.С., Колеух Д.С.

ЛПЭ ИЭФ УрО РАН

## Введение



#### Процесс магнитно-импульсной сварки



<u>Требования к импульсу поля:</u> Длительность импульса: 10-100 мкс Амплитуда поля: от 40 Тл

#### Проблема:

Низкая стойкость индукторов



бериллиевой

бронзы







Стальной индуктор

#### Используемые типы индукторов



### Причина:

Высокие термомеханические нагрузки на поверхности: (1) высокое «магнитное давление», (2) перегрев поверхности. Магнитное давление до 1 ГПа, T ~ 600-800°C.

## Наноструктурный медь-ниобиевый сплав 🕢



 $\rho \approx 120-160\%$  IACS Микроско  $\sigma_{\rm UTS} \approx 1-1,6$  ГПа

#### Микроскопия поперечного сечения шины 2\*8 мм

Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности

## Цель



Изготовление методами порошковой металлургии компактов из порошка медь-ниобия и определение возможности использования такого материала в сильных магнитных полях (СМП).

# Задачи

- 1. Получить и исследовать объемный материал на основе наноструктурного сплава Cu-Nb.
- 2. Исследование свойств материалов при температурах спекания 510-850°С.
- 3. Испытания при генерации поля 40 Тл микросекундной длительности

## Получение порошка

## 

#### Исходный материал – проволока 0,18 мм





#### БАЗОВЫЙ порошок Cu-Nb





Варьирование удельного сопротивления материалов для формирования двухслойных структур





![](_page_4_Picture_12.jpeg)

### БП15AlN

Cu-Nb + 15 об.% TiC Cu-Nb + 15 об.% TiN Cu-Nb + 15 об.% AlN

Размер частиц: Cu-Nb: 20-64 мкм TiN: < 4 мкм AlN: < 5 мкм TiC: < 2 мкм

### БП15TiN

### БП15ТіС

Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности

# Получение и подготовка образцов 🛛 👁

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

| t <sub>имп</sub> | 500 мкс    |
|------------------|------------|
| Т                | 430°C      |
| U                | 1,4-2,4 кВ |
| Рмип             | До 1,3 ГПа |
| Рвак             | 10 Па      |

Сортамент образцов для различных анализов (получены МИ-прессованием при давлении 1-1,5 ГПа @ 430С)

![](_page_5_Picture_5.jpeg)

испытания в КМП, микромеханические дилатометрия, определение предела испытания, РФА удельное сопр. прочности

![](_page_5_Picture_7.jpeg)

# Микроструктура материалов

### БΠ

![](_page_6_Picture_2.jpeg)

**БП+15%ТіС** 

![](_page_6_Picture_4.jpeg)

### БП+15%TiN

![](_page_6_Picture_6.jpeg)

### $B\Pi$ +15%AlN

![](_page_6_Picture_8.jpeg)

# Микроструктура материалов

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

Образец БП до

![](_page_7_Figure_4.jpeg)

![](_page_7_Figure_5.jpeg)

![](_page_7_Figure_6.jpeg)

nm

500

400

300

200

100

![](_page_7_Figure_7.jpeg)

0

![](_page_7_Figure_8.jpeg)

АСМ-изображения травленых шлифов образцов ДО И после отжига при 800°С.

## Структурные характеристики материалов 🕢

![](_page_8_Figure_1.jpeg)

Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности

## Удельное сопротивление с температурой отжига

![](_page_9_Figure_1.jpeg)

| Снижение ρ от начального значения, % |      |         |         |         |        |  |
|--------------------------------------|------|---------|---------|---------|--------|--|
| Т <sub>отж.</sub> , °С               | БП   | БП15ТіС | БП15AlN | БП15ТіN | Провод |  |
| 510                                  | -    | -       | -       | -       | -      |  |
| 750                                  | 36,5 | 35,0    | 33,8    | 33,6    | -0,6   |  |
| 800                                  | 40,4 | 42,3    | 33,9    | 40,6    | 6,0    |  |
| 850                                  | 51,0 | 39,2    | 32,1    | 46,0    | 23,5   |  |

### Микротвердость материалов с температурой отжига

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

# Стойкость при генерации поля 40 Тл ଡ

![](_page_12_Figure_1.jpeg)

# Стойкость при генерации поля 40 Тл 🕢

Шина Cu-Nb

![](_page_13_Picture_2.jpeg)

100 импульсов

![](_page_13_Picture_4.jpeg)

Образец из базового порошка (спекание 800°С)

![](_page_13_Picture_6.jpeg)

Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности

![](_page_13_Picture_8.jpeg)

500 µm

# Стойкость при генерации поля

Образец из базового порошка (спекание 850°С)

![](_page_14_Picture_2.jpeg)

40 Тл 120 импульсов

**Дополнительное** испытание **шины.** Поле **50** Тл

![](_page_14_Picture_5.jpeg)

#### 10 импульсов

# Стойкость при генерации поля 40 Тл

Двухслойный образец:

Верхний слой БП 15TiC

Нижний слой БΠ

![](_page_15_Picture_4.jpeg)

#### 20 импульсов

Образец из спрессованного рубленного провода

![](_page_15_Picture_7.jpeg)

#### Образцы спечены при 850°С

![](_page_15_Picture_10.jpeg)

## Выводы

![](_page_16_Picture_1.jpeg)

- 1. Получены материалы на основе порошка наноструктурного Cu-Nb с добавками TiC, TiN, AlN.
- 2. Структурные изменения в материале при термообработке до 800°С приводят к снижению удельного сопротивления на 30-50%, твердости на 20-50%.
- 3. Термообработка в 850 °С приводит к возникновению оксидных и карбидных соединений, в особенности для материалов с добавками.
- 4. Предел прочности на разрыв после термообработки у исходной шины в 2 раза меньше чем у образцов из базового порошка и с добавкой TiC.
- 5. Проведены сравнительные испытания волокнистого нанокомпозита Cu-18%Nb (коммерческая шина), однослойных структур на основе мелкодисперсного порошка Cu-Nb и двухслойной структуры с высокорезистивным слоем, содержащим добавку 15 % TiC.

Работа выполнена при частичном финансировании проектов РФФИ и БРФФИ, РФФИ и РОСАТОМ (№ 20-58-00029, 20-21-00050).

Spirin A.V., Paranin S.N., Krutikov V.I., Zaytsev E.Y., Khrustov V.R., Kaigorodov A.S., Koleuh D.S. Durability study of Bulk Cu-Nb composites in High Magnetic Fields of Microsecond Duration // MG 2020 Proceedings book, Biarritz, France. – 2022. – P.118-121.

### Механические свойства материалов

![](_page_19_Figure_2.jpeg)

L.P. Deng et.al., "*Thermal stability of Cu-Nb microcomposite wires*", Acta Materialia. 101, 181-188 (2015) H.R.Z. Sandim et.al., "*Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire*", Scripta Materialia, 51(11), 1099–1104 (2004) E. N. Popovaa, \* and I. L. Deryaginaa, "*Evolution of Structure of Cu–Nb Composite under High-Pressure Torsion and Subsequent Annealing*", Physics of Metals and Metallography, 2020, Vol. 121, No. 12, pp. 1182–1187.