

25-я Конференция молодых ученых ИЭФ УрО РАН

Разработка концентратора магнитного потока с использованием наноструктурного Cu-Nb композита для магнитно-импульсной сварки

Зайцев Е.Ю.*, Спирин А.В., Крутиков В.И., Паранин С.Н.,

ЛПЭ ИЭФ УрО РАН

Введение

Процесс магнитно-импульсной сварки (МИС)

Требования к импульсу поля:

Длительность импульса: 10-100 мкс Амплитуда поля: 30-50 Тл

Проблема:

Низкая стойкость индукторов

Снижение азимутальной однородности поля

бериллиевой

бронзы

Стальной индуктор

Используемые типы индукторов

Причина:

Высокие термомеханические нагрузки на поверхности: (1) высокое «магнитное давление», (2) перегрев поверхности. Магнитное давление до 1 ГПа, T ~ 600-800°C.

Наноструктурный медь-ниобиевый сплав 🕢

Микроскопия поперечного сечения шины 2*8 мм

Разработка концентратора магнитного потока с использованием наноструктурного Cu-Nb композита для магнитно-импульсной сварки

ООО "Русатом МеталТех" (Москва)

Цель

Исследование применимости и эффективности использования наноструктурного композита Cu-Nb в индукторах для МИ-сварки

Задачи

- 1. Разработка модельного индуктора/концентратора на основе стали с интегрированным рабочим элементом из композитного шины Cu-Nb
- Определить характеристики разработанной системы: эффективность генерации СМП и азимутальную однородность такого поля.
- 3. Сравнить характеристики концентратора из стали и Cu-Nb, сопоставить результаты сварки ФМ стали в них

Формирование поля в рабочем канале 💬

Разработка концентратора магнитного потока с использованием наноструктурного Cu-Nb композита для магнитно-импульсной сварки

Реализация конструкции КМП

0. Отжиг шины Cu-18% Nb 2*8 мм

1. Формовка шины при комнатной температуре

2. Подготовка тела КМП из стали ЗОХГСА 3. Пайка шин и тела КМП припоем ПСр-40

Процесс приводит не только к снижению прочности, но и уменьшению удельного сопротивления:

 $ho \approx 2,4$ мкОм*см $\sigma_{\rm B} \approx 890~{\rm M}\Pi a, ~\sigma_{\rm O2} \approx 520{\rm M}\Pi a$

Реализация конструкции КМП

4. Сборка КМП

Финальные размеры разработанных КМП

Однородность поля

Ansys Maxwell 3D:

Эффективность генерации поля

Одновитковый индуктор (ЗоХГСА)

- Внутренний диаметр 31 мм
- Длина рабочего канала 30 мм

Индуктивный датчик:

- CuBe2 стержень (8,55 мм)
- Катушка: <u>5</u> мм²

Схема измерения

$$B = \frac{1}{S} \int_0^t V dt$$

	Cu-Nb (2 части)	Cu-Nb (4 части)	30ХГСА (2 части)
<u>В_m</u> , Тл/МА І _m , Тл	56,3	50,6	43

Сжатие медной трубки

Сжатие

Cu-Nb (2 части)

Cu-Nb (4 части)

Поперечное сечение образцов, полученных при В = 50 Тл, Т/2 = 14 мкс

	D _o	D _{min}	D _{max}	η, %
Cu-Nb (2 части)	9,55	4,9	6,7	27
Cu-Nb (4 части)	9,55	5,2	5,7	7

Сварка стали STS410

Поле, определяемое по величине разрядного тока:

В=40-50 Тл

Лучшие результаты получены при 48-49 Тл

Геометрия соединяемых деталей

12/15

Бо́льшие диаметры соответствуют положению зазоров КМП

Сварка стали STS410

13/15

Cu-Nb (2 части)

Cu-Nb (4 части)

B₂

<L1>, MM L2, MM Отн. разница, %

В₁ соответствует максимуму магнитного поля в рабочем канале, **В**₂ минимуму:

 $B_1 > B_2$

Cu-Nb 2	5,38	6,02	11
Cu-Nb 4	6,46	6,37	1,4
зохгса	6,64	5,66	16

Выводы

- 1. Впервые получены результаты по применению наноструктурного Cu-Nb композита для генерации сильных магнитных полей микросекундной длительности.
- 2. Измеренная эффективность генерации магнитного поля составила 56 Тл/МА и 50 Тл/МА для двух- и четырехсоставного КМП соответственно.
- 3. Неоднородность сжатия, рассчитанная для медных трубок составила 27 и 7 % для двух- и четырехсоставного КМП соответственно.
- 4. Изучено влияние неоднородностей поля на длину сварных соединений при МИС стали STS410. Разница длин соединений в экстремумах поля составила приблизительно 11 и 1,4 % для двух-и четырехсоставного КМП соответственно.
- 5. На текущий момент оба модельных индуктора выдержали около 20 импульсов поля 40-50 Тл.

Исследование выполнено за счет гранта Российского научного фонда (РНФ). №22-79-00307

- 1. Krutikov, V.; Spirin, A; Zaytsev, E.; Petrova, S.; Paranin, S. Conditions for solid-state joining of thin-walled ferritic-martensitic steel pipes with end plugs made by magnetic pulse welding. Letters on Materials 14 (1), 2024 pp. 21-26 https://doi.org/10.22226/2410-3535-2024-1-21-26
- 2. Zaytsev, E.; Krutikov, V.; Spirin, A.; Paranin, S. Development of Multi-part Field-Shapers for Magnetic-Pulse Welding Using Nanostructured Cu-Nb Composite. Preprints 2024, 2024031582. https://doi.org/10.20944/preprints202403.1582.v1

Исследуемые подходы

Разработка концентратора магнитного потока с использованием наноструктурного Cu-Nb композита для магнитно-импульсной сварки

Исследуемые подходы

Поиск оптимальной геометрии КМП для повышения радиальной однородности магнитного поля в рабочем канале, общей прочности системы и отношения B_m/I_m

Исследуемые подходы

Получение и исследование свойств материалов на основе наноструктурного Cu-Nb сплава для индукторов сильного магнитного поля микросекундной длительности