СВИДЕТЕЛЬСТВА УДАРНО-ВОЛНОВОЙ ПРИРОДЫ НИЗКОТЕМПЕРАТУРНЫХ ПРОЦЕССОВ ПЕРЕРАСПРЕДЕЛЕНИЯ АТОМОВ ПРИ ИОННОЙ БОМБАРДИРОВКЕ

Е.В. Макаров, В.В. Овчинников, Ф.Ф. Махинько, В.А. Семенкин Институт электрофизики УрО РАН Лаборатория пучковых воздействий

Цель работы:

Изучение изменения параметра ближнего порядка холоднодеформированного сплава Fe-6,25 ат. % Мп в ходе кратковременного воздействия ионами Ar⁺ при температуре, не превышающей порога инициирования диффузионных процессов, а также после термического воздействия в тех же температурных интервалах.

Объект исследования

Сплав: Fe-6,25 ат. % Mn Плавление и отливка Прокатка при 900 °C до 500 мкм Холодная прокатка до 100 мкм (исходное холоднодеформированное состояние) <u>Подготовка образцов:</u> Уладение загрязнений эдектропитическим

Удаление загрязнений электролитическим методом

Доведение до нужной для Мессбауэра толщины 25 мкм на притирах

Вакуумная установка «ИЛМ-1» для ионно-лучевой обработки с источником «Пульсар-1М»

Параметры имплантера:

- j = 50 250 мкА/см²
- Е = 5 40 кэВ

Выбранный режим: j = 200 мкА/см² E = 15 кэВ

Термическое воздействие

Мессбауэровская спектроскопия

Нагреватель с нихромовыми спиралями мощностью 500 Вт

Прецизионный Мессбауэровский спектрометр CM-2201

Ионно-лучевое воздействие Скорость нагрева: 56 °C/с $T_{max} = 311$ °C

Термическое воздействие Скорость нагрева: $50 \,^{\circ}\text{C/c}$ $T_{\text{max}} = 313 \,^{\circ}\text{C}$

t, c

Параметры пространственного распределения ионов Ar⁺ в сплаве

Fe-6,25 ат. % Мп в звисимости от энергии ионов

Энергия ионов,	Электронные	Ядерные потери	Проективный	Продольный разброс,	Поперечный
кэВ	потери	(dE/dx) _n ,	пробег, нм	НМ	разброс,
	$(dE/dx)_{\epsilon}$, $\partial B/Å$	эB/Å			НМ
5	13,5	94,4	3,7	2,5	1,8
10	18,7	108,9	6,1	3,9	2,8
15	22,7	115,4	8,3	5,1	3,7

Исходное состояние

После термического воздействия

После воздействия ионами Ar⁺

Расчет параметра ближнего порядка по Каули

 $\overline{H} = H_{\text{Fe}}(1+kc) \left[1 + c \sum_{i=1}^{N} Z_i h_i (1-\alpha) \right],$

Параметр ближнего порядка (α)

Выводы

- Установлено, что под воздействием облучения ионами Ar⁺ с энергией 15 кэВ за достаточно короткое время ~ 10 с увеличивается параметр ближнего порядка по сравнению с исходным состоянием. В то же время при аналогичном нагреве образцов термически изменение ближнего порядка незначительно.
- Наблюдаемые эффекты дальнодействия в условиях низкого флюенса (10¹⁶ ион/см²) ионов связываются не с термостимулированными или радиационно-усиленными процессами, а с радиационно-динамическими эффектами за счет «радиационной тряски» метастабильной среды послекаскадными уединенными волнами.

Спасибо за внимание!

Выражаю особую благодарность сотрудникам ЛПВ: Овчинникову Владимиру Владимировичу, Махинько Федору Федоровичу, Семенкину Владимиру Алексеевичу.