

Импульсная катодолюминесценция керамик из оксида иттрия и иттрийалюминиевого граната, активированных гольмием

А.С. Макарова

аспирант 4 года обучения Лаборатория квантовой электроники

Научный руководитель: <u>В.И. Соломонов</u>,

д.ф.-м.н., в.н.с.

ХХV Конференция молодых ученых ИЭФ УрО РАН г. Екатеринбург

Российская академия наук Уральское отделение и н с т и т у т Электрофизики

Импульсная катодолюминесценция керамик из оксида иттрия и иттрий-алюминиевого

граната, активированных гольмием

А.С. Макарова

граната, активированных гольмием

<u>Цель данной работы</u>: Исследовать керамики $\text{Ho:Y}_2\text{O}_3$ и $\text{Ho:Y}_3\text{Al}_5\text{O}_{12}$ методом импульсной катодолюминесценции в видимой и ближней инфракрасной областях спектра и сравнить результаты с данными, полученными при фотовозбуждении этих же образцов.

<u>Практическая значимость</u>: Разработка сцинтилляторов и люминофоров, работающих в видимом диапазоне спектра.

Российская академия наук Уральское отделение и н с т и т у т ЭЛЕКТРОФИЗИКИ

Блок-схема экспериментальной установки

Параметры работы установки

Средняя энергия электронов	170 кэВ;
Длительность импульса	2 нс;
Плотность тока	130 А/см ² ;
Спектральный диапазон работ ФЭУ	200-1200 нм;
Спектральный диапазон работы спектрометра	450-900 нм.

Измерения проводились в воздухе при комнатной температуре образцов.

Обработка сигналов, полученных при нелинейном токовом режиме работы ФЭУ*

* В.И. Соломонов и др. Опт. журнал. 89, 46 (2022).

Российская академия наук Уральское отделение и н с т и т у т ЭЛЕКТРОФИЗИКИ УБО РАН

граната, активированных гольмием

А.С. Макарова

Характерный спектр ИКЛ керамик Ho:Y₂O₃

Диаграмма энергетических уровней Ho³⁺ в кубическом Y₂O₃. Стрелками указаны наблюдаемые излучательные переходы.

Спектры поглощения керамик Ho:Y₂O₃ и Ho:Y₃Al₅O₁₂ в видимом диапазоне

излучательные переходы.

* P. Loiko, L. Basyrova, R. Maksimov, V. Shitov, M. Baranov, F. Starecki, X. Mateos, P. Camy. J. Lum. 240, 118460 (2021).

граната, активированных гольмием

А.С. Макарова

Спектр излучения ионов Cr³⁺ в Y₃Al₅O₁₂ К.М. Kinsman, J. McKittrick, E. Sluzky, K. Hesse. J. Am. Ceram. Soc. **77**, 2866 (1994). Спектр возбуждения и излучения ионов Fe³⁺ в Y₃Al₅O₁₂ N. Shiran et al. Funct. Mat. **23**, 191 (2016).

Содержание примесных элементов в нанопорошках,
использованных при изготовлении керамик
$Ho:Y_3Al_5O_{12}$

Content, ppm	Powder	
	Al ₂ O ₃	Ho:Y ₂ O ₃
Na	160	42
Mg	<1	1.9
Ti	3	3
V	<1	<1
Cr	<1	4.9
Mn		<1
Fe	270	<1
Co	<1	<1
Ni	<1	<1
Cu	4.2	1.9
Zn	<1	26
La	1.3	<1
Ce	<1	<1
Pr	<1	<1
Nd	3	2
Sm	<1	<1
Eu	<1	<1
Gd	<1	<1
Tb	<1	<1
Dy	<1	<1
Er	<1	1
Tm	<1	<1
Yb	<1	3.4
Lu	<1	<1
Hf	<1	<1

граната, активированных гольмием

А.С. Макарова

9/9

Заключение

- I. Выявлено, что при возбуждении электронным пучком в диапазоне 450-850 нм в иттрий-алюминиевом гранате и оксиде иттрия наблюдаются три группы спектральных линий ионов гольмия.
- II. Измерены времена жизни некоторых излучательных уровней гольмия, которые совпадают с временами, измеренными при фотовозбуждении.
- III. В спектрах иттрий-алюминиевого граната были обнаружены полосы люминесценции трехвалентных ионов хрома и железа, которые были введены с промышленными микропорошками. Однако не обнаружено влияние данных примесей при их небольшой концентрации на люминесцентные характеристики гольмия в видимом диапазоне спектра.

Метод ИКЛ позволяет проводить исследования составов вещества, в частности экспрессное определение наличия неконтролируемых примесей.

նավատհասկասկասհասհասհասհասհասհասհասհասհասհասհայի

Спасибо за внимание!

Спектры пропускания керамик

<u>առիավապիտկա</u>վահավասիավումիավասիավասիավասիավալությո

Получение нанопорошков

Схема установки.

Мишень 1 устанавливалась в испарительную камеру 2. Кварцевая 4 линза фокусировала излучение лазера 3 на её поверхность. Для однородной выработки мишени она вращалась и перемещалась радиально С помощью специального механизма. Получение нанопорошка происходило В потоке Ar. который прокачивался ИЗ баллона 10 через всю установку.

Продукты лазерной абляции (наночастицы, микронные капли и осколки мишени) вместе с потоком газа попадали сначала в циклоны 5, где улавливались наиболее крупные микрочастицы. Подавляющее число наночастиц улавливалось на поверхности фильтровального рукава в рукавном фильтре 6. Собранный именно в этом устройстве нанопорошок считался пригодным для дальнейших экспериментов. Наконец, после дополнительной очистки фильтрами 7, 8 газ выбрасывался в воздух. Давление аргона в испарительной камере с помощью редуктора *11* устанавливалось на уровне 100 кПа. По мере накопления порошка в рукавном фильтре давление увеличивалось на 15 кПа, после чего фильтр очищался. Объёмный расход газа измерялся ротаметром *12* и с помощью дросселя *13* устанавливался равным ~3.7 м³/ч. На входе в испарительную камеру аргон очищался от посторонних частиц фильтром *9*.

Приготовление керамик методом вакуумного спекания

- 1. Одноосное статическое прессование нанопорошков;
- 2. Отжиг компактов для удаления органики и обеспечения фазовых превращений;
- 3. Спекание компактов в вакууме для уплотнения и снижения пористости с целью получения высокой прозрачности керамик;
- 4. Дополнительный просветляющий отжиг.