РОССИЙСКАЯ АКАДЕМИЯ НАУК УРАЛЬСКОЕ ОТДЕЛЕНИЕ

Институт Электрофизики

Электронная структура La₂CuO₄ в зависимости от механических микросмещений

И.А. Некрасов, А.А. Слободчиков

Екатеринбург, 2018

Фазовая диаграмма купратов в координатах Т_с-б

Фазовая диарамма купратов в координатах Т_с-є

$$\varepsilon = 2(d_0 - \langle R_{\rm Cu-O} \rangle)/d_0$$

 R_{сu-0} – расстояние Сu-О когда есть напряжения

S Agrestini et al 2003 J. Phys. A: Math. Gen. 36 9133

Кристаллическая структура La₂CuO₄ (HTT)

- Тетрагональная структура
- Наиболее важная составная единица октаэдр СиО₄
- В различных купратах параметр решетки а может варироваться в диапазоне 3.74~3.94 Å

d(Cu-O) = 1.87~1.97 Å

Шестизонная модель

- Cu-3d_{x2-y2}, Cu-3d_{z2}
- О-2р_x, О-2р_y (в плоскости ху)
- 2 О-2р_z (на оси z)

Зонная структура при разных значениях микросмещения є

Представлены данные для изменения микросмещения є на –1.0%, –0.5%, 0%, 0.5%, 1.0%, 1.5%, 2.5%, 3.5%, 4.15% (соотвестсвует 3.74~3.94 Å) при сохранении объема октаэдра CuO₄.

Зонная структура получена в приближении LDA при проектировании на функции Ванье^{1,2} для шестизонной модели.

¹Andersen O., Pawlowska Z., and Japsen O., Phys. Rev. B. 34, 8, 5253 (1986) ²http://amulet-code.org/

Фазовая диаграмма в координатах Τ_-ε

Значения интегралов и одноэлектронной энергии, полученные в ходе проектирования на функции Ванье для шестизонной модели

· ·		~			-				
Hopping	Connection vector	-1%	-0.5%	0%	0.5%	1.5%	2.5%	3.5%	4.15%
		$E_{x^2} = -1.79$	-1.824	-1.861	-1.9	-1.657	-2.047	-2.124	-2.18
		${\rm E}_{z^2}{=}{-}2.056$	-2.075	-2.097	-2.119	-1.821	-2.186	-2.227	-2.26
		${ m E}_{p^x} \!=\! -2.724$	-2.775	-2.825	-2.863	-2.541	-2.98	-3.026	-3.053
		$E_{p^y} = -2.724$	-2.775	-2.825	-2.863	-2.541	-2.98	-3.026	-3.056
		$E_{p^z} = -1.741$	-1.727	-1.721	-1.72	-1.541	-1.69	-1.713	-1.729
$t(x^2, x^2)$	(1.0, 0.0, 0.0)	0.204	0.195	0.187	0.179	0.173	0.149	0.135	0.127
$t'(x^2, x^2)$	(1.0, 1.0, 0.0)	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
$t(z^2, z^2)$	(1.0, 0.0, 0.0)	0.053	0.052	0.049	0.048	0.049	0.048	0.046	0.044
$\mathbf{t}'(z^2,\!z^2)$	(1.0, 1.0, 0.0)	0.002	0.002	0.000	0.001	0.000	0.003	0.002	0.002
$+{ m t}(x^2,\!p_x)$	(0.5, 0.0, 0.0)	1.450	1.427	1.403	1.379	1.313	1.280	1.232	1.201
$-\mathbf{t}(x^2, p_x)$	(-0.5, 0.0, 0.0)	-1.450	-1.427	-1.403	-1.379	-1.313	-1.280	-1.232	-1.201
$+\mathrm{t}'(x^2,\!p_x)$	(0.5, -1.0, 0.0)	0.016	0.014	0.012	0.010	0.011	0.004	0.002	0.001
$-\mathbf{t}'(x^2,p_x)$	(-0.5, 1.0, 0.0)	-0.016	-0.014	-0.012	-0.010	-0.011	-0.004	-0.002	-0.001
$+{ m t}(z^2,\!p_x)$	(-0.5, 0.0, 0.0)	0.517	0.520	0.523	0.526	0.534	0.549	0.562	0.570
$-\mathbf{t}(z^2,p_x)$	(0.5,0.0,0.0)	-0.517	-0.520	-0.523	-0.526	-0.534	-0.549	-0.562	-0.570
$+{ m t}'(z^2,\!p_x)$	(0.5, -1.0, 0.0)	0.030	0.028	0.026	0.024	0.022	0.016	0.013	0.010
$-\mathbf{t}'(z^2,p_x)$	(-0.5, 1.0, 0.0)	-0.030	-0.028	-0.026	-0.024	-0.022	-0.016	-0.013	-0.010
$\scriptstyle {\rm t}(z^2,p_z)$	(0.0, 0.0, 0.18)	0.779	0.798	0.820	0.838	0.860	0.880	0.905	0.918
$^{\mathrm{t}^{\prime}(z^{2},p_{z})}$	(0.5, -0.5, -0.32)	-0.015	-0.014	-0.014	-0.013	-0.012	-0.010	-0.009	-0.009
$+{ m t}(p_x,\!p_y)$	(0.5, 0.5, 0.0)	0.893	0.876	0.859	0.842	0.809	0.768	0.732	0.710
$-\mathbf{t}(p_x,p_y)$	(0.5, -0.5, 0.0)	-0.893	-0.876	-0.859	-0.842	-0.809	-0.768	-0.732	-0.710
${\rm t'}(p_x,\!p_y)({\rm pxpx})$	(1.0, 0.0, 0.0)	-0.042	-0.040	-0.038	-0.037	-0.048	-0.034	-0.035	-0.035
$\mathbf{t}''(p_x,\!p_y)(\mathbf{pxpx})$	(0.0, 1.0, 0.0)	-0.030	-0.029	-0.027	-0.025	-0.019	-0.013	-0.007	-0.002
$+{ m t}(p_x,\!p_z)$	(0.5, 0.0, 0.18)	0.379	0.391	0.403	0.415	0.428	0.443	0.456	0.462
$-t(p_x,p_z)$	(-0.5, 0.0, 0.18)	-0.379	-0.391	-0.403	-0.415	-0.428	-0.443	-0.456	-0.462
$+{ m t}'(p_x,p_z)$	(0.5, -1.0, 0.18)	0.010	0.010	0.011	0.011	0.012	0.012	0.013	0.012
${\rm t'}(p_x,\!p_z)$	(-0.5, 1.0, 0.18)	-0.010	-0.010	-0.011	-0.011	-0.012	-0.012	-0.013	-0.012
$_{-\mathbf{t}^{\prime\prime}\left(p_{x},p_{z}\right) }$	(1.0, 0.5, -0.32)	-0.013	-0.013	-0.013	-0.013	-0.013	-0.012	-0.011	-0.012
$+\mathrm{t}^{\prime\prime}(p_x,p_z)$	(-1.0, 0.5, -0.32)	0.013	0.013	0.013	0.013	0.013	0.012	0.011	0.012

Выводы

- Зонная структура в приближении LDA, спректированная на функции Ванье для шестизонной модели, испытывает равномерное смещение в зависимости от изменения механического микросмещения є;
- Для рассматриваемой модели получены значения интегралов перескока, на основе которых будет построена теоретическая модель для изучения зависимости Т_с от микросмещений решетки.

Текущая работа

 изучение электронных свойств орторомбического La₂CuO₄ в зависимости от изменения расстояния Cu-O

