19-я Конференция молодых учёных ИЭФ УрО РАН

Влияние показателя преломления на рассеяние лазерного излучения в порошковых диэлектрических средах

Тихонов Е.В.

Институт электрофизики УрО РАН

Лаборатория квантовой электроники *e-mail: tikhonov@iep.uran.ru*

<u>Лазерный метод</u> получения наночастиц заключается в испарении твердого вещества излучением лазера и в последующей конденсации паров в буферном газе.

<u>Непрерывный волоконный</u> иттербиевый лазер ЛС-07-Н

Разница в длинах волн излучения

Излучение взаимодействует с материалом по-разному

<u>Импульсно-периодический СО₂-лазер</u>

Параметр	ЛС-07Н	«ЛАЭРТ»
КПД	25-30%	~8%
Пиковая мощность излучения	720 W	9 kW
Размер пятна на мишени	430 µm (линза 400 mm)	0,7x0,9 mm
Длина волны излучения	1,07 µm	10,6 µm
Плотность мощности в пятне	0,46 MW/cm ² (линза 400 mm)	1,3 MW/cm ²

Особенности получения нанопорошков CaF2 и 1%Nd:Y2O3

Параметр	Волоконный µ	й лазер (λ=1,07 lm)	СО ₂ -лазер (λ=10,6 μm)			
	CaF ₂	$Nd:Y_2O_3$	CaF ₂	$Nd:Y_2O_3$		
Производительность получения нанопорошка (Непрерывный режим)	0 g/h!	22 g/h	15 g/h	28 g/h		
Показатель поглощения	1,3·10 ⁻³ cm ⁻¹	9·10 ⁻³ cm ⁻¹	0,31 cm ⁻¹	Непрозрачен		
Показатель преломления	1,4289	1,9029	1,3110	1,6561		
Средняя мощность излучения	~6	00 W	~600 W			

Φ отография мишени CaF_2

после испарения

Источники рассеяния лазерного излучения в прессованной мишени

Изображение реальной прессованной мишени из **Y**₂**O**_{3,} *ρ*_{отн}≈50%

Прессованная мишень – это компакт из плохо припечённых друг к другу микронных крупинок

Множество пор и дефектов

Основная причина низкой производительности получения нанопорошка – 🔨 <mark>рассеяние лазерного излучения в объёме мишени на частицах и порах</mark> 💉

Цель работы:

11111

NNNNNN==

Исследовать влияние показателя преломления материала прессованной мишени на характер взаимодействия с ней излучения волоконного лазера.

=====

Основные результаты

Моделирование процессов рассеяния выполнялось при помощи программного пакета «COMSOL Multiphysics 5.2»

Входные параметры модели

1111

Основные параметры излучения волоконного иттербиевого

лазера ЛС-07Н

Плотность мощности излучения на мишени I	0,46 МВт/см ²
Размер лазерного пятна на поверхности мишени	430 µm (400 mm)
Режим работы лазера	Непрерывный

Мишени для моделирования

Материал	MgF ₂	CaF ₂	BaF ₂	SiO ₂	BeO	MgAl ₂ O ₄	Al ₂ O ₃	Y ₂ O ₃	YSZ
Показатель преломления	1,38	1,42	1,505	1,54	1,61	1,7	1,75	1,9	2,12

Физические уравнения, описывающие задачу

Волновое уравнение Гельмгольца

$$\nabla imes \mu_r^{-1}(\nabla imes E) - k_0^2 \left(\varepsilon_r - \frac{j\sigma}{\omega \varepsilon_0} \right) E = 0$$

То же уравнение без учёта поглощения лазерного излучения в объёме мишени

$$\nabla \times \mu_r^{-1} (\nabla \times E) - k_0^2 \varepsilon_r E = 0$$

Тангенциальная составляющая электрического поля, распространяющаяся вдоль оси Oz

 $E(x,y,z)=E_0(x,y)exp(-ik_z z),$

где $k_0 = \omega/c_0, \omega = 2\pi/\lambda, a E_0(x,y)$ – это фоновое электрическое поле, задаваемое в качестве входного параметра задачи.

<u>Граничные условия</u>

 $n \times E = n \times E_0$ -Условие сохранение тангенциальной составляющей электрического поля $n \times (\nabla \times (E + E_b)) - jkn \times (E \times n) = 0$ -условие, делающее стенки геометрии прозрачными для излучения

Конфигурация электрического поля внутри одной частицы из различных материалов при воздействии на неё излучением волоконного иттербиевого лазера. I_{rad}=0,46 MW/cm²

Конфигурация электрического поля сильно зависит от показателя преломления материала

Зависимость максимальной интенсивности излучения от размера частицы

Шаг измерения по диаметру частицы – 10 пт, длина волны излучения -1,07 µт

Геометрия модели прессованной мишени

Электрическое поле в моделируемой задаче распространялось вдоль оси Оу в направлении, показанном на рисунке

Картина распределения электрического поля

Видно, что с ростом показателя преломления материала растёт максимальная интенсивность излучения и значительно меняется конфигурация электрического поля. Эффект фокусировки и интерференция рассеиваемого излучения приводят к локальному усилению электрического поля на порядок (до 10⁷ W/cm²)

Распределение электрического поля по глубине и зависимость характерной глубины затухания излучения от показателя преломления

Зависимости максимальной интенсивности излучения от глубины проникновения излучения волоконного лазера (a) и характерной глубины затухания излучения от показателя преломления материала (б)

Переход от случая рассеяния на одной частице к случаю прессованной мишени, несмотря на усреднение картины по интенсивности, не снимает наличия локальных максимумов!

Зависимость максимальной интенсивности излучения от показателя преломления материала

С ростом показателя преломления материала растёт максимальная интенсивность излучения и значительно меняется конфигурация электрического поля.

Эффект фокусировки и интерференция рассеиваемого излучения приводят к локальному усилению электрического поля на порядок (до 10⁷ W/cm²)

Относительная максимальная интенсивность лазерного излучения

Материал	MgF ₂	CaF ₂	BaF ₂	SiO ₂	BeO	MgAl ₂ O ₄	Al ₂ O ₃	Y ₂ O ₃	YSZ
I _{max} /I _{rad}	n=1,38	n=1,42	n=1,505	n=1,54	n=1,61	n=1,7	n=1,75	n=1,9	n=2,12
СО2-лазер	0,58	1,54	1,17	0,98	1,53	1,87	2,58	1,38	4,69
Волоконный лазер	0,58	0,73	0,91	0,98	1,04	1,5	1,48	1,91	2,79

Выводы

- Основной вклад в снижение мощности излучения при получении нанопорошка может давать не поглощение, а рассеяние излучения.
- При рассеянии лазерного излучения на частицах прессованной мишени возникают локальные максимумы, интенсивность в которых на один-два порядка выше интенсивности падающего излучения (0,46 MW/cm²)
- Размер центра рассеяния сильно влияет на характер рассеяния излучения и значения интенсивности в локальных максимумах
- Источником разрушения мишени может быть не только поглощающий дефект внутри мишени, но и наличие локального максимума при выполнении условия резонанса.
- С ростом показателя преломления материала увеличивается интенсивность излучения в локальных максимумах
- Зная характерную глубину затухания излучения, мы можем судить о характере взаимодействия излучения с веществом и, руководствуясь конкретными значениями интенсивности в данной области, говорить о том или ином механизме разрушения мишени под действием лазерного излучения.