Российская академия наук Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «ФИЗИКА И АСТРОНОМИЯ (НАПРАВЛЕННОСТЬ: ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ)»

Б1.В.ОД.1

Специальность 03.06.01 - «Физика и астрономия»

Изучение распределения плотности ионного тока по сечению мощных непрерывных пучков ускоренных ионов калориметрическим методом

Материалы разработал:

д.ф.-м.н.

Овчинников В.В.

ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ ИОННОГО ТОКА ПО СЕЧЕНИЮ МОЩНЫХ НЕПРЕРЫВНЫХ ПУЧКОВ ИОНОВ КАЛОРИМЕТРИЧЕСКИМ МЕТОДОМ.

Рассмотрены физические основы калориметрического метода определения плотности ионного тока по сечению мощных пучков ионов. Представлены методические указания к лабораторной работе, использующей этот метод для измерения плотности ионного тока в непрерывных мощных пучках ускоренных ионов аргона с энергией 20-40 кэВ, сечением до 100 см², генерируемых ионным источником «ПУЛЬСАР-1М».

ВВЕДЕНИЕ

Получение достоверных данных о характере распределения плотности ионного тока по сечению непрерывных мощных пучков ионов большого сечения является нетривиальной задачей. Устройства типа цилиндра Фарадея не позволяют диагностировать такие пучки, вследствие образования в них плотной проводящей плазмы, искажающей измерения. В таких случаях используются достаточно сложные электрические схемы (устройства), которые для каждого конкретного типа источника могут быть предложены и профессиональными специалистами области реализованы только В электрофизических измерений [1]. Погрешность измерения флакса (потока) частиц (см⁻²·с⁻¹; пропорционального для частиц одинакового заряда плотности ионного тока) может быть обусловлена также эффектом частичной перезарядки ионов пучка и в итоге присутствием в потоке частиц нейтральных атомов. В связи с этим, в работе [2] предложен гравикалориметрический метод определения флакса ионов. Кроме того, этот метод определить коэффициент распыления позволяет атомов мишени И коэффициент поглощения мишенью энергии потока частиц (с учетом распыления), лучеиспускательную a также измерить способность (коэффициент черноты) мишени.

Прогресс техники генерации газоразрядной обеспечил плазмы создание различных типов технологических сильноточных ионных источников для модификации свойств конструкционных материалов. Типичные значения энергии ионов, используемых в указанных целях, составляют несколько десятков килоэлектронвольт при плотностях тока от нескольких десятков до нескольких сотен мкА/см². Соответствующие значения плотности мощности ионных пучков могут достигать десяти и более BT/cm^2 .

[3], Исследованиями, выполненными в последние десятилетия установлено, что воздействие ионных пучков на вещество заключается не только в легировании материалов и создании радиационных дефектов (приводящих к интенсификации миграционных процессов и, как следствие, к изменению структуры конденсированных сред и фазообразованию), но и в инициировании радиационно-динамических (ударноволновых) перестроек конденсированных сред, вследствие эмиттации (испускания) послекаскадных ударных волн. Кроме того, мощные ионные пучки оказывают интенсивное термическое воздействие на вещество, приводящее к существенному разогреву мишеней, что также во многих случаях сопровождается процессами структурно-фазовых превращений.

Для того, чтобы четко разделить указанные аспекты воздействия пучков ускоренных ионов на материалы необходимо иметь возможность надежно измерять *параметры пучка ионов*: энергию ионов E (кэВ), плотность ионного тока j (мкА/см²) и дозу облучения D (см⁻²) – число частиц на см², а также определять экспериментально и рассчитывать теоретически изменение *температуры* в объеме мишени в ходе облучения. Параметр E определяется ускоряющим напряжением. Температура, плотность ионного тока и соответствующая доза облучения (пропорциональная произведению $j \cdot \Delta t$, где Δt – время облучения) могут быть получены *калориметрическим* методом.

Получим, следуя [2], необходимые соотношения для реализации калориметрического метода. Наиболее простой и легко прогнозируемый случай с точно известными граничными условиями имеет место, когда тонкая плоская мишень подвешена в вакууме на нитях малого сечения, теплопроводностью которых можно пренебречь, и получает энергию от однородного пучка нормально внедряемых в ее поверхность ионов. Отвод энергии от мишени при этом осуществляется исключительно за счет теплового излучения.

1. РЕШЕНИЕ ОДНОМЕРНОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

Некоторые одномерной аспекты, касающиеся решения задачи теплопроводности, соответствующей рассмотренному случаю, проанализированы в работе [4]. В частности, в этой работе показано, что для металлических мишеней толщиной менее 1 см различие абсолютных температур на облучаемой и необлучаемой поверхностях плоской мишени в стационарном режиме не превышает 1%. Это означает, что на практике при использовании достаточно тонких мишеней зависимостью температуры от координаты можно пренебречь.

Следовательно, мы можем использовать вместо T(x,t) функцию *одной переменной* T(t), которая имеет две асимптоты (см. рис. 1):

$$\beta P_s S \Delta t = c \rho S l \Delta T \quad (\Delta t \to 0), \text{ или иначе} \quad \left(\frac{dT}{dt}\right)_{T \to T_0} = \frac{P_s}{c \rho l}, \tag{1}$$

И

$$\beta P_s = 2\alpha \sigma (T^4 - T_0^4), \quad T \to T_{\infty} \quad (\Delta t \to \infty)^{-1}, \tag{2}$$

где β - коэффициент поглощения энергии пучка ионов мишенью, P_s плотность мощности ионного пучка ($P_s = U_j$, U – ускоряющее напряжение, j– плотность ионного тока), S – площадь мишени, Δt – время облучения, c, ρ и l – теплоемкость, плотность и толщина мишени, T_0 и T – начальная (равная температуре стенок камеры ионного имплантера) и стационарная (при $\Delta t \rightarrow \infty$) температуры мишени ($\Delta T = T - T_0$), α – лучеиспускательная способность (коэффициент черноты) мишени, σ – константа Стефана-Больцмана. Коэффициент β определяет плотность мощности, поглощаемую мишенью, с

¹ Если отсчет времени начат в момент $t_0 = 0$, то t – время облучения ($\Delta t \equiv t$), а $T(\Delta t) \equiv T(t)$ – соответствующая температура, что исключает какие-либо недоразумения в обозначениях.

учетом того, что часть энергии пучка тратится на распыление мишени: $\beta = (P_s - Q_s)/P_s$, где $Q_s = \Delta mq$ (Δm – потери массы на единицу площади мишени, обусловленные ее распылением, q – энергия сублимации материала мишени).

Как уже отмечалось, экспериментальное определение плотности ионного тока $j = e\dot{\Phi}^2$, где $\dot{\Phi} = \frac{1}{S}\frac{dN}{dt}$ – флакс ионов (или, иначе, скорость набора дозы облучения или флюенса), является сложной задачей. Использование для этой цели цилиндра Фарадея с электродом, на который подается отрицательный потенциал, отсекающий вторичные электроны, выбиваемые ионами из мишени³, является эффективным лишь при малых плотностях ионного тока.

Выше отмечалось также, что в некоторых случаях погрешность измерения флакса может быть обусловлена перезарядкой части ионов, при этом разогрев мишени может наблюдаться в отсутствие соответствующего роста плотности ионного тока за счет присутствия в потоке частиц нейтральных атомов, вследствие эффекта перезарядки.

Рассмотренный случай, имеющий точное аналитическое решение, позволяет преодолеть объективно существующие трудности определения флакса (числа ионов, падающих на единичную поверхность мишени за 1 с) и лучеиспускательной способности (коэффициента черноты) распыляемой поверхности мишени в условиях вакуума.

Параметры, входящие в уравнения (1) и (2) могут быть разделены на следующие группы: 1) σ , *c*, ρ , *q* – физические константы и справочные данные (либо величины, которые могут быть надежно измерены стандартными методами), 2) Δm , *U*, *T*₀, *T*, Δt и *l* – величины, которые могут быть надежно определены в ходе выполнения эксперимента по облучению

²Соотношение записано для однозарядных ионов, *e* - заряд электрона ($\dot{\Phi} = d\Phi/dt$, где $\Phi - \phi$ люенс или доза облучения).

³Коэффициент эмиссии вторичных электронов зависит от энергии ионов и, как правило, данные разных авторов о его величине существенно расходятся.

плоской мишени пучками ионов и, наконец, 3) j и α и β – величины, с необходимой непосредственное измерение которых точностью осуществить крайне затруднительно, могут быть вычислены с использованием уравнений (1) и (2), представляющих собой выражение законов сохранения энергии и Стефана-Больцмана.

Действительно, из соотношений (1) и (2) нетрудно получить, что

$$j = (q\Delta m + c\rho l \left(\frac{dT}{dt}\right)_{\Delta t \to 0})/U, \qquad (3)$$

$$\beta = c\rho l \left(\frac{dT}{dt}\right)_{\Delta t \to 0})/(jU), \qquad (4)$$

$$\alpha = \frac{\beta j U}{2\sigma (T^4 - T_0^4)}.$$
(5)

В записанных уравнениях под *j* понимается плотность ионного тока в пучке до возможного процесса перезарядки, затрудняющего измерение флакса электрофизическими методами. Это означает, что мы учитываем все частицы, ускоренные до энергии E = eU, в том числе, нейтральные атомы (т.е. ионы, претерпевшие перезарядку). В связи с этим, более корректно использовать понятие флакса $\dot{\phi}$, определяющего число частиц в единицу времени на единицу площади или, иначе, скорость набора дозы. В отсутствие процесса перезарядки $\dot{\phi} = \frac{j}{a}$.

Предложенная схема расчета, с использованием соотношений (3) - (5), позволяет надежно определять из экспериментов по облучению значение флакса $\dot{\phi} = \frac{j}{e}$ (скорости набора дозы) и величину лучеиспускательной способности α (степени черноты) металлических мишеней. Кроме того, могут быть получены значения коэффициента поглощения β пучка ионов мишенью и соответствующего коэффициента распыления k (отношения числа распыленных атомов мишени к числу падающих частиц).

2. ПРИМЕР ИСПОЛЬЗОВАНИЯ КАЛОРИМЕТРИЧЕСКОГО МЕТОДА ОПРЕДЕЛЕНИЯ ФЛАКСА ИОНОВ

Предлагаемая методика была использована в работе [2] для определения значений параметров *j*, β и α , а также коэффициента распыления *k* ионами Ar⁺ медной мишени, представляющей собой полированную пластинку 10×20×2 мм³. Облучение осуществлялось на ионном имплантере с ионным источником ПУЛЬСАР-1М на основе тлеющего разряда с холодным полым катодом [5], работающим в режиме генерации непрерывных пучков ионов при энергии ионов (*E*) 10, 20, 30 и 40 кэВ и плотностях ионного тока (*j*), задававшихся по показаниям миллиамперметра, 100, 200 и 300 мкА/см² (диаметр пучка ионов принимался равным диаметру выходного электрода ионного источника: *d* = 100 мм). Медная пластинка помещалась в центр пучка ионов. Для определения температуры мишени использовалась тонкая хромель-алюмелевая термопара с пренебрежимо малой теплопроводностью.

В табл. 1 приведены стационарные температуры мишени $10 \times 20 \times 2 \text{ мм}^3$ (соответствующие времени облучения $\Delta t = 30$ мин) и потери массы мишени (в знаменателе) за все время облучения (соответствующая доза облучения или флюенс могут быть рассчитаны по формуле $\Phi = \frac{j\Delta t}{e}$). Коэффициент распыления определяется соотношением: $k = \frac{N_{Cu}}{N_{Ar}} = \frac{\Delta m}{\Phi SA_{Cu}} N_0$, где A_{Cu} – атомная масса меди, N_{Cu} – число распыленных атомов Cu, $N_{Ar} = \Phi S$ – число внедренных в мишень ионов Ar^+ , N_0 – число Авогадро.

Оценки коэффициента β , выполненные в работе [2] при различных значениях *E* и *j*, показали, что его величина близка к единице. Это означает,

что потери энергии на «распыление» ионов невелики (они не превышают 0,5% от полной энергии пучка ионов).

Рис. 1. Кривые нагрева медной мишени пучком ускоренных ионов Ar^+ с энергией 10 кэВ при вариации плотности ионного тока: $1 - j^* = 100 \text{ мкA/cm}^2$; $2 - j^* = 200 \text{ мкA/cm}^2$; $3 - j^* = 300 \text{ мкA/cm}^2$ (плотности ионного тока указаны по показаниям миллиамперметра: $j^* = I/S$, I и S - ток и фиксированное сечение пучка, равное сечению выходного электрода)

Таблица 1

1 21		• ``	
(в знаменателе) от энергии ионов Аг	и плотности	ионного тока	
по показаниям милли	амперметра		

Зависимость температуры мишени (°С), а также потерь ее массы (мг)

$E, \kappa \mathfrak{B} \rightarrow j^*, MKA/cm^2$	10	20	30	40
100	539,2/3,0	655,8/2,8	661,8/2,0	652,1/1,4
200	582,3/4,6	790,2/4,5	864,7/4,0	-
300	657,4/5,2	_	_	-

Коэффициент распыления (k) практически не зависит от энергии ионов и плотности ионного тока в пределах использованного в работе диапазона изменения этих величин. Рассчитано среднее значение коэффициента распыления: k = 6,1. Это означает, что один атом Ar^+ распыляет в среднем шесть атомов меди.

Значение *коэффициента* α слабо зависит от температуры (рис. 2), изменяясь в пределах 0,25 – 0,28, что укладывается в величину погрешности.

Рис. 2. Рассчитанная по результатам измерений излучательная способность медной мишени в вакууме (степень черноты) в зависимости от температуры

Полученные с использованием уравнения (4) значения плотности ионного тока существенно отличаются от значений, задаваемых по показаниям прибора в предположении о постоянном сечении пучка при различных E и j (рис. 3).

Этот результат указывает на то, что ширина и профиль пучка могут заметно изменяться в зависимости от значений энергии и плотности ионного тока.

Таким образом, реализуя условия эксперимента, отвечающие отводу тепла от облучаемой ионами мишени только излучением, а также учитывая выполнение в асимптотических случаях: $\Delta t \rightarrow 0$ и $\Delta t \rightarrow \infty$ законов сохранения энергии и Стефана-Больцмана, удается определить флакс бомбардирующих частиц $\dot{\phi}(j = e\dot{\phi})$, лучеиспускательную способность α (степень черноты)

мишени, коэффициент поглощения энергии β и коэффициент распыления k атомов мишени.

Рис. 3. Зависимости плотности ионного тока, заданной по показаниям миллиамперметра (кривая 1) и расчетной (кривая 2), от энергии ионов

3. ВВОДНЫЕ ЗАМЕЧАНИЯ И ОПИСАНИЕ ХОДА ВЫПОЛНЕНИЯ РАБОТЫ

Согласно [2], коэффициент β для медной мишени отличается от единицы не более, чем на полпроцента и, следовательно, можно пренебречь слагаемым $q\Delta m$ в уравнении (3), а также приближенно принять β равным единице в уравнении (5). Указанные уравнения при этом примут очень простой вид:

$$j = (c\rho l \left(\frac{dT}{dt}\right)_{\Delta t \to 0}) / U, \qquad (6)$$

$$\alpha = \frac{jU}{2\sigma(T^4 - T_0^4)}.\tag{7}$$

Следовательно, для определения плотности ионного тока ј в заданной точке горизонтального сечения пучка ионов и излучательной способности α необходимо получить кривую T(t), подобную кривым, приведенным на рис. 1. Для этого металлический зонд (с приваренной к нему тонкой термопарой), помещается в данную точку выбранного сечения пучка. Экспериментальный файл $T(t_k)$ обрабатывается с помощью специальной компьютерной программы Temp-1D. Полученные значения тангенса угла наклона (производная dT/dt) в точке $t \rightarrow 0$ (см. сноску 1) и значение стационарной температуры T подставляются в уравнения (6) и (7).

Для выполнения лабораторной работы используется ионный имплантер оснащенный ИЛМ-1 (рис. 4), двумя встречно направленными «ПУЛЬСАР-1М» на основе технологическими ионными источниками низкого давления с тлеющего разряда холодным полым катодом (допускающими работу как в непрерывном, так И В импульснопериодическим режиме). Предусмотрена система перемещения мишеней в ходе их облучения (со скоростью до 40 мм/с).

Рис. 4. Ионный имплантер ИЛМ-1 с ионным источником ПУЛЬСАР-1М (*a*); встречные пучки ионов Ar^+ круглого сечения (S ~ 100 см²) (б)

Это касается также возможности перемещения зондовых устройств (с возможностью остановки в заданных положениях), что позволяет сканировать пучок. В ходе выполнения лабораторной работы группе студентов из 2-3 человек предлагается использовать один из зондов (1 - 8) устройства, предназначенного для сканирования профиля пучка, вид которого приведен на рис. 5.

б

Рис. 5. Зондирующее устройство: 3D модель (*a*), действующий образец (б)

Расстояние между центрами соседних зондов размером 10х20х3 мм³, изготовленных из технически чистой меди, составляет 12 мм.

Опрос зондов осуществляется с помощью модульной системы накопления данных фирмы Advantech «Adam 4000» (США), рис. 6, с записью файлов.

Рис. 6. Система сбора информации (*a*) с измерительным модулем ADAM-4019 (*б*) и графики изменения температуры металлических зондов (*в*) в ходе облучения для E = 20 кэВ и j = 100 мкА/см² (1-3 – вблизи оси пучка, 2-8 на периферии пучка – измерения от центра пучка по радиусу)

Кривые $T_i(t_k)$ (*i* – номер зонда, t_k – массив временных координат), представленные на рис. 6 *в*, записываются системой АДАМ-4019 в виде файлов, соответствующих отдельным зондам. Номер конкретного зонда для каждой группы студентов указывается преподавателем.

Предполагается, что при правильной настройке системы формирующих пучок электродов ионный источник ПУЛЬСАР-1М генерирует ионные пучки с постоянной по сечению плотностью ионного тока. В силу этого предварительная оценка плотности ионного тока в пучке может быть получена как отношения: $j^* = I/S$, где I – полный ток пучка измеряемый по показаниям миллиамперметра на пульте управления ионным имплантером, S - площадь выпускающего пучок электрода (~ 100 см²). Однако с учетом реальных особенностей профиля пучка, который не является идеально прямоугольным, истинные значения плотности ионного тока *j*_i могут быть калориметрических получены только ПО результатам измерений ИЗ соотношения (б).

На рис. 7 показан профиль ионного пучка, генерируемого ионным источником ПУЛЬСАР-1М, который получен калориметрическим методом в работе [6]. Фотографический снимок, наблюдаемый благодаря ионизации остаточных газов в вакуумной камере имплантера, ионных пучков представлен на рис. 4 *б*.

Рис. 7. Профиль распределения ионного тока по сечению пучков ионов Ar^+ для E = 30 кэВ

Данные, представленные преподавателем и измеренные в ходе выполнения лабораторной работы: E = eU, I, $S(j^* = I/S)$, а также результаты обработки кривых T(t) с помощью компьютерной программы Temp-1D (в результате такой обработки определяются значения производной $\left(\frac{dT}{dt}\right)_{\Delta t \to 0}$ и стационарной температуры T разогрева конкретного зонда) должны быть сведены в таблицу (см. табл. 2). После чего по формулам (6) и (7) рассчитываются значения j и α и также вносятся в таблицу.

Таблица 2

Исходные данные и результаты калориметрического измерения плотности тока в заданной точке пучка и лучеиспускательной способности (коэффициента черноты) зонда

Номер зонда	<i>Е</i> , кэВ	<i>S</i> , см ²	<i>I</i> , мА	<i>j</i> [*] , мкА/см ²	T, K	$\left(\frac{dT}{dt}\right)_{\Delta t \to 0}, \mathrm{K/c}$	<i>j</i> мкА/см ²	α

После заполнения табл. 2 студентам предлагается рассчитать теоретическую кривую разогрева ионным пучком медного зонда $10 \times 20 \times 2$ мм³ (для заданного значения *E* и рассчитанных из эксперимента значений *j* и α) с помощью программы ТЕМПЕРАТУРА, использующей аналитическое решение для *T*(*t*) [4], и сравнить ее с экспериментальной кривой нагрева. Для этого необходимо построить графики, подобные представленным на рис. 8. Теплоемкость меди принять равной 390 Дж/(кг·К).

Рис. 8. Кривые разогрева медного зонда ионным пучком: эксперимент (1) и расчет методом [4] (2) при значениях E = 20 кэB, j = 100 мк A/cm^2 , $\alpha = 0,28$ (табл. 2).

4. ФОРМА ОТЧЕТА

Отчет по лабораторной работе должен содержать:

- 1. Титульный лист (форма 1, предоставляется преподавателем).
- 2. Изложение теоретических основ метода, цели работы, методики измерений.
- 3. Описание хода работы.
- 4. Результаты работы в виде таблицы и графиков.
- 5. Выводы по работе (в произвольной форме).

5. ВОПРОСЫ ПО ЛАБОРАТОРНОЙ РАБОТЕ

1. Какие трудности могут возникнуть при экспериментальном определении плотности ионного тока в мощных пучках ионов?

2. Как зависит скорость набора флюенса (экспозиционной дозы) от плотности ионного тока?

3. В каких случаях флакс пропорционален плотности ионного тока?

4. Когда можно использовать T(t) вместо T(x,t) при решении одномерной задачи теплопроводности?

5. Какой физический закон отражает асимптота к кривой T(t) нагрева мишени при $t \rightarrow 0$?

6. Какому физическому закону отвечает асимптота к кривой нагрева мишени при $t \rightarrow \infty$?

7. Оцените, как будет изменяться температура мишени при уменьшении ее лучеиспускательной способности (коэффициента черноты)?

8. Определите плотность мощности пучка ионов (BT/cm^2) при энергии ионов E = 25 кэВ и плотности ионного тока 200 мкА/см².

9. Оцените плотность мощности потока солнечного излучения, если кровельное железо разогрелось до 60°С?

10. Как определить толщину медной пластинки, поверхность которой имеет обработку, аналогичную применявшимся в работе зондам, с использованием ионного имплантера?

Методическое пособие подготовлено в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы (ГК № П650 от «19» мая 2010 г.).

ЛИТЕРАТУРА

- 1. Гаврилов Н.В., Каменецких А.С. Экспериментальное исследование влияния процессов в области распространения ионного пучка на результаты электрических измерений тока пучка // Журнал технической физики. 2006. Т. 76. Вып. 6. С. 32-37.
- 2. Овчинников В.В., Овчинников С.В., Махинько Ф.Ф., Повзнер А.А. Определение флакса и лучеиспускательной способности металлических мишеней в условиях облучения мощными пучками ионов калориметрическим методом // Известия вузов. Физика. 2011. Т. 54. № 1/3. С. 126-130.
- 3. Овчинников В.В. Радиационно-динамические эффекты. Возможности формирования уникальных структурных состояний и свойств

конденсированных сред // Успехи физических наук. 2008. Т. 178. № 9. С. 991-1001.

- 4. Абдрашитов В.Г., Рыжов В.В. Расчет температуры мишени при ионной имплантации // Поверхность. Физика, химия, механика. 1993. № 2. С. 106-108.
- 5. Гаврилов Н.В., Никулин С.П., Радковский Г.В. Источник интенсивных широких пучков ионов газов на основе разряда с полым катодом в магнитном поле // Приборы и техника эксперимента. 1996. № 1. С. 93-98.
- 6. Овчинников С.В., Махинько Ф.Ф., Овчинников В.В., Повзнер А.А. Анализ распределения флакса по сечению мощных ионных пучков большого сечения калориметрическим методом // Труды XXI Международного совещания «Радиационная физика твердого тела» 22-27 августа 2011, Украина, Севастополь. С. 148-154.