Российская академия наук Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОННЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ» Б1.В.ДВ.1-1

Вопросы составил:

д.ф.-м.н. Некрасов И.А.

Фонд оценочных средств по дисциплине предназначен для проверки сформированности компетенций по Федеральному государственному образовательному стандарту высшего образования по направлению подготовки 03.06.01 Физика и астрономия (утвержден приказом Министерства образования и науки $P\Phi$ от 30.07.2014 Neq 867).

Оценивается уровень освоения обучающимися компетенций:

№ n/n	Индекс	Содержание
1.	ОПК-1	Способность самостоятельно осуществлять научно-
		исследовательскую деятельность в соответствующей
		профессиональной области с использованием современных методов
		исследования и информационно-коммуникационных технологий.
2.	УК-1	Способность к критическому анализу и оценке современных
		научных достижений, генерированию новых идей при решении
		исследовательских и практических задач, в том числе в
		междисциплинарных областях.
3.	УК-3	Готовность участвовать в работе российских и международных
		исследовательских коллективов по решению научных и научно-
		образовательных задач.
4.	УК-5	Способность планировать и решать задачи собственного
		профессионального и личностного развития.
5.	ПК-1	Способность ставить, формализовать и решать задачи, умением
		системно анализировать научные проблемы, генерировать новые идеи
		и создавать новое знание.
6.	ПК-2	Способность проводить научные исследования в избранной
		области экспериментальных и (или) теоретических физических
		исследований с помощью современной приборной базы и
		информационных технологий с учётом отечественного и зарубежного
		опыта.
7.	ПК-3	Способность пользоваться современными методами обработки,
		анализа и синтеза информации в избранной области физических
-	TTYC 4	исследований.
8.	ПК-4	Способность применять на практике умения и навыки
		в организации исследовательских и проектных работ, способность
		самостоятельно организовывать и проводить научные исследования и
		внедрять их результаты в качестве члена или руководителя
		коллектива.

При оценке знаний аспирантов используются следующие критерии:

- а) оценка «отлично» ставится в том случае, если обучающийся демонстрирует глубокие знания изученного материала, грамотно и логично излагает его, не затрудняется с ответом при видоизменении вопроса, изучил основную и дополнительную литературу, умеет самостоятельно излагать ее содержание, делать обобщения и выводы;
- б) оценка «хорошо» ставится в том случае, если обучающийся твердо усвоил программный материал, излагает его грамотно и по существу, однако допускает отдельные неточности и пробелы в знаниях;
- в) оценка «удовлетворительно» ставится в том случае, если обучающийся усвоил только основную часть программного материала, допускает

неточности, непоследовательность в изложении материала, затрудняется сделать обобщения и выводы, применить знания к анализу современной действительности;

- г) оценка «неудовлетворительно» ставится, если обучающийся не знает значительной части программного материала, допускает существенные ошибки при его изложении, проявляет неуверенность при ответах на дополнительные и наводящие вопросы;
- д) для оценки «зачтено» применяются критерии, указанные в пунктах «а», «б», «в»;
- е) для оценки «не зачтено» применяются критерии пункта «г».

Билет № 1

- 1. Определение кристаллического твердого тела. Идеальный кристалл. Зонные методы расчета электронной структуры кристаллических твердых тел в современной физике твердого тела.
- 2. Приближение почти свободных электронов. Электрон в слабом периодическом потенциале (плоские волны, решение уравнения Шредингера, зонная структура).

Билет № 2

- 1. Основная вычислительная задача зонных методов. Движение свободного электрона в вакууме (гамильтониан, понятие энергетической дисперсии, волновая функция).
- 2. Метод сильной связи. Решение уравнения Шредингера и вид энергетической дисперсии в методе сильной связи.

Билет № 3

- 1. Атом водорода (гамильтониан, радиальное уравнение Шредингера). Общий вид угловых распределений орбиталей атома водорода для различных *m и l.* Решения радиального уравнения Шредингера для различных *m и l.* Волновая функция водородоподобного атома.
- 2. Обобщенный метод ЛКАО, двухценровое приближение, интегралы КостераСлетера.Типы меожорбитальных перекрытий. Оценка величины расщепления дуровня в октаэдрическом и тетраэдрическом окружении.

Билет № 4

- 1. Кристаллическая структура твердых тел (основные понятия). Разложение по неприводимым представлениям (теоретикогрупповой анализ). Расщепления с уровня в октаэдрическом и тетраэдрическом окружении.
- 2. Обратная решетка (основные понятия). Зона Бриллюэна. Теорема Блоха и следствия из нее.

Билет № 5

- 1. Основные уравнения практических методов зонных расчетов электронной структуры кристаллических твердых тел: метод присоединенных плоских волн (ППВ), псевдопотенциальные методы, метод линеаризованных маффинтин орбиталей (ЛМТО).
- 2. Понятие гибридизации, энергии гибридных состояний, состав гибридных волновых функций, гибридные зоны. Решение одномерной цепочки с неэквивалентными узлами для случая ближайших соседей (предельные случаи сильной и слабой гибридизации).