Российская академия наук Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ «ВАКУУМНАЯ И ПЛАЗМЕННАЯ ЭЛЕКТРОНИКА» Б1.В.ДВ.1-3

Специальность	03.06.01 –	«Физика	и астроном	«киі

Вопросы составил:

к.ф.-м.н., доцент

Уйманов И.В.

Фонд оценочных средств по дисциплине предназначен для проверки сформированности компетенций по Федеральному государственному образовательному стандарту высшего образования по направлению подготовки 03.06.01 Физика и астрономия (утвержден приказом Министерства образования и науки РФ от 30.07.2014 Neq 867).

Оценивается уровень освоения обучающимися компетенций:

No॒	Индекс	Содержание		
n/n				
1.	ОПК-1	Способность самостоятельно осуществлять научно-		
		исследовательскую деятельность в соответствующей		
		профессиональной области с использованием современных методов		
		исследования и информационно-коммуникационных технологий.		
2.	УК-1	Способность к критическому анализу и оценке современных		
		научных достижений, генерированию новых идей при решении		
		исследовательских и практических задач, в том числе в		
		междисциплинарных областях.		
3.	УК-3	Готовность участвовать в работе российских и международных		
		исследовательских коллективов по решению научных и научно-		
		образовательных задач.		
4.	УК-5	Способность планировать и решать задачи собственного		
		профессионального и личностного развития.		
5.	ПК-1	Способность ставить, формализовать и решать задачи, умением		
		системно анализировать научные проблемы, генерировать новые идеи		
		и создавать новое знание.		
6.	ПК-2	Способность проводить научные исследования в избранной		
		области экспериментальных и (или) теоретических физических		
		исследований с помощью современной приборной базы и		
		информационных технологий с учётом отечественного и зарубежного		
		опыта.		
7.	ПК-3	Способность пользоваться современными методами обработки,		
		анализа и синтеза информации в избранной области физических		
		исследований.		
8.	ПК-4	Способность применять на практике умения и навыки		
		в организации исследовательских и проектных работ, способность		
		самостоятельно организовывать и проводить научные исследования и		
		внедрять их результаты в качестве члена или руководителя		
		коллектива.		

При оценке знаний аспирантов используются следующие критерии: а) оценка «отлично» ставится в том случае, если обучающийся демонстрирует глубокие знания изученного материала, грамотно и логично излагает его, не затрудняется с ответом при видоизменении вопроса, изучил основную и дополнительную литературу, умеет самостоятельно излагать ее содержание, делать обобщения и выводы;

б) оценка «хорошо» ставится в том случае, если обучающийся твердо усвоил программный материал, излагает его грамотно и по существу, однако допускает отдельные неточности и пробелы в знаниях;

- в) оценка «удовлетворительно» ставится в том случае, если обучающийся усвоил только основную часть программного материала, допускает неточности, непоследовательность в изложении материала, затрудняется сделать обобщения и выводы, применить знания к анализу современной действительности;
- г) оценка «неудовлетворительно» ставится, если обучающийся не знает значительной части программного материала, допускает существенные ошибки при его изложении, проявляет неуверенность при ответах на дополнительные и наводящие вопросы;
- д) для оценки «зачтено» применяются критерии, указанные в пунктах «а», «б», «в»;
- е) для оценки «не зачтено» применяются критерии пункта «г».

1

- 1. Элементы электронной теории твердых тел.
- 2. Кинетическая вторичная электрон-электронная эмиссия.

- 1. Потенциальный барьер на границе металл-вакуум.
- 2. Потенциальная ион-электронная эмиссия.

3

- 1. Коэффициент прозрачности потенциального барьера металл-вакуум.
- 2. Влияние электрического поля на вторичную электрон-электронную эмиссию.

4

- 1. Плотность тока и плотность потока энергии при термоавтоэмиссии. NED и TED представления.
- 2. Влияние электрического поля на потенциальную ион-электроннную эмиссию.

5

- 1. Анализ NED распределения при E-Т эмиссии.
- 2. Влияние электрического поля на фотоэлектронную эмиссию.

6

- 1. Анализ NED распределения при Т-Е эмиссии.
- 2. Применение вторичной электрон-электронной ионной эмиссии.

7

- 1. Анализ ТЕО распределения при Е-Т эмиссии.
- 2. Применение фотоэлектронной эмиссии.

8

- 1. Анализ TED распределения при E-Т эмиссии.
- 2. Сканирующая туннельная микроскопия.

9

- 1. Вычисление плотности тока термоавтоэмиссии.
- 2. Потенциальный барьер на границе металл-вакуум при задерживающем потенциале.

10

- 1. Вычисление плотности потока энергии при термоавтоэмиссии.
- 2. Общая классификация явления электронной эмиссии.

11

- 1. Практическое применение термоэмиссии.
- 2. Линзы в оптике заряженных частиц.

12

- 1. Экспериментальное изучение автоэлектронной эмиссии.
- 2. Точки поворота для потенциального барьера металл-вакуум.

13

- 1. Применение автоэлектронной эмиссии.
- 2. Эффект Шоттки.

14

- 1. Экспериментальное изучение термоэлектронной эмиссии.
- 2. Автостимулирование различных видов эмиссии.

15

- 1. Автоэлектронная микроскопия.
- 2. Аксиальная и квадрупольная электростатические линзы.

16

- 1. Взрывная эмиссия электронов. Основные закономерности.
- 2. Полевой ионный микроскоп.

17

- 1. Инициирование взрывной электронной эмиссии. Предельные токи термоавтоэмиссии.
- 2. Автоэлектронный проектор.

18

- 1. Искровая стадия взрывной электронной эмиссии. Эрозия катода.
- 2. Понятие сил изображения.

19

- 1. Закономерности прохождения тока при взрывной эмиссии.
- 2. Аксиальная и квадрупольная магнитные линзы.

20

- 1. Фотоэлектронная эмиссия.
- 2. Пучки заряженных частиц низкой интенсивности. Прохождение пучка частиц через тонкую линзу.