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LDA+DMFT is a novel computational technique forab initio investigations of real materials
with strongly correlated electrons, such as transition metals and their oxides. It combines the
strength of conventional band structure theory in the localdensity approximation (LDA) with a
modern many-body approach, the dynamical mean-field theory(DMFT). In the last few years
LDA+DMFT has proved to be a powerful tool for the realistic modeling of strongly correlated
electronic systems. In this paper the basic ideas and the set-up of the LDA+DMFT(X) approach,
where X is the method used to solve the DMFT equations, are discussed. Results obtained with
X=QMC (quantum Monte Carlo) and X=NCA (non-crossing approximation) are presented and
compared. By means of the model system La1−xSrxTiO3 we show that the method X matters
qualitatively and quantitatively. Furthermore, we discuss recent results on the Mott-Hubbard
metal-insulator transition in the transition metal oxide V2O3 and theα-γ transition in the 4f-
electron system Ce.
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1 Introduction

The calculation of physical properties of electronic systems by controlled approximations
is one of the most important challenges of modern theoretical solid state physics. In partic-
ular, the physics of transition metal oxides – a singularly important group of materials both
from the point of view of fundamental research and technological applications – may only
be understood by explicit consideration of the strong effective interaction between the con-
duction electrons in these systems. The investigation of electronic many-particle systems
is made especially complicated by quantum statistics, and by the fact that the investigation
of many phenomena require the application of non-perturbative theoretical techniques.

From a microscopic point of view theoretical solid state physics is concerned with the
investigation of interacting many-particle systems involving electrons and ions. However,
it is an established fact that many electronic properties ofmatter are well described by the
purely electronic Hamiltonian

Ĥ =
∑

σ

∫

d3r Ψ̂+(r, σ)

[

− ~
2

2me

∆ + Vion(r)

]

Ψ̂(r, σ)

+
1

2

∑

σσ′

∫

d3r d3r′ Ψ̂+(r, σ)Ψ̂+(r′, σ′) Vee(r−r
′) Ψ̂(r′, σ′)Ψ̂(r, σ), (1)

where the crystal lattice enters only through an ionic potential. The applicability of this
approach may be justified by the validity of the Born and Oppenheimer approximation.1

Here,Ψ̂+(r, σ) and Ψ̂(r, σ) are field operators that create and annihilate an electron at
positionr with spin σ, ∆ is the Laplace operator,me the electron mass,e the electron
charge, and

Vion(r) = −e2
∑

i

Zi
|r− Ri|

and Vee(r−r
′) =

e2

2

∑

r6=r′

1

|r − r′| (2)

denote the one-particle potential due to all ionsi with chargeeZi at given positionsRi,
and the electron-electron interaction, respectively.

While the ab initio Hamiltonian (1) is easy to write down it is impossible to solve
exactly if more than a few electrons are involved. Numericalmethods like Green’s Func-
tion Monte Carlo and related approaches have been used successfully for relatively modest
numbers of electrons. Even so, however, the focus of the workhas been on jellium and
on light atoms and molecules like H, H2, 3He, 4He, see, e.g., the articles by Anderson,
Bernu, Ceperleyet al. in the present Proceedings of theNIC Winterschool 2002. Be-
cause of this, one generally either needs to make substantial approximations to deal with
the Hamiltonian (1), or replace it by a greatly simplified model Hamiltonian. At present
these two different strategies for the investigation of theelectronic properties of solids
are applied by two largely separate groups: the density functional theory (DFT) and the
many-body community. It is known for a long time already thatDFT, together with its
local density approximation (LDA), is a highly successful technique for the calculation
of the electronic structure of many real materials.2 However, for strongly correlated ma-
terials, i.e.,d- andf -electron systems which have a Coulomb interaction comparable to
the band-width, DFT/LDA is seriously restricted in its accuracy and reliability. Here, the
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model Hamiltonian approach is more general and powerful since there exist systematic
theoretical techniques to investigate the many-electron problem with increasing accuracy.
These many-body techniques allow one to describe qualitative tendencies and understand
the basic mechanism of various physical phenomena. At the same time the model Hamil-
tonian approach is seriously restricted in its ability to make quantitative predictions since
the input parameters are not accurately known and hence needto be adjusted. One of the
most successful techniques in this respect is the dynamicalmean-field theory (DMFT) –
a non-perturbative approach to strongly correlated electron systems which was developed
during the past decade.3–11 The LDA+DMFT approach, which was first formulated by
Anisimovet al.,12, 13combines the strength of DFT/LDA to describe the weakly correlated
part of theab initio Hamiltonian (1), i.e., electrons ins- andp-orbitals as well as the long-
range interaction of thed- andf -electrons, with the power of DMFT to describe the strong
correlations induced by the local Coulomb interaction of thed- or f -electrons.

Starting from theab initio Hamiltonian (1), the LDA+DMFT approach is presented in
Section 2, including the DFT in Section 2.1, the LDA in Section 2.2, the construction of a
model Hamiltonian in Section 2.3, and the DMFT in Section 2.4. As methods used to solve
the DMFT we discuss the quantum Monte Carlo (QMC) algorithm in Section 2.5 and the
non-crossing approximation (NCA) in Section 2.6. A simplified treatment for transition
metal oxides is introduced in Section 2.7, and the scheme of aself-consistent LDA+DMFT
in Section 2.8. As a particular example, the LDA+DMFT calculation for La1−xSrxTiO3

is discussed in Section 3, emphasizing that the method X to solve the DMFT matters on
a quantitative level. Our calculations for the Mott-Hubbard metal-insulator transition in
V2O3 are presented in Section 4, in comparison to the experiment.Section 5 reviews our
recent calculations of the Ceα-γ transition, in the perspective of the models referred to
as Kondo volume collapse and Mott transition scenario. A discussion of the LDA+DMFT
approach and its future prospects in Section 6 closes the presentation.

2 The LDA+DMFT approach

2.1 Density functional theory

The fundamental theorem of DFT by Hohenberg and Kohn14 (see, e.g., the review by
Jones and Gunnarsson2) states that the ground state energy is a functional of the elec-
tron density which assumes its minimum at the ground state electron density. Following
Levy,15 this theorem is easily proved and the functional even constructed by taking the
minimum (infimum) of the energy expectation value w.r.t. all(many-body) wave functions
ϕ(r1σ1, ... rNσN ) at a given electron numberN which yield the electron densityρ(r):

E[ρ] = inf
{

〈ϕ|Ĥ |ϕ〉
∣

∣

∣
〈ϕ|

N
∑

i=1

δ(r − ri)|ϕ〉 = ρ(r)
}

. (3)

However, this construction is of no practical value since itactually requires the eval-
uation of the Hamiltonian (1). Only certain contributions like the Hartree energy
EHartree[ρ] = 1

2

∫

d3r′ d3r Vee(r− r
′) ρ(r′)ρ(r) and the energy of the ionic potential

Eion[ρ] =
∫

d3r Vion(r) ρ(r) can be expressed directly in terms of the electron density.
This leads to

E[ρ] = Ekin[ρ] + Eion[ρ] + EHartree[ρ] + Exc[ρ], (4)
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whereEkin[ρ] denotes the kinetic energy, andExc[ρ] is the unknown exchange and cor-
relation term which contains the energy of the electron-electron interaction except for the
Hartree term. Hence all the difficulties of the many-body problem have been transferred
into Exc[ρ]. While the kinetic energyEkin cannot be expressed explicitly in terms of the
electron density one can employ a trick to determine it. Instead of minimizingE[ρ] with
respect toρ one minimizes it w.r.t. a set of one-particle wave functionsϕi related toρ via

ρ(r) =
N

∑

i=1

|ϕi(r)|2. (5)

To guarantee the normalization ofϕi, the Lagrange parametersεi are introduced such
that the variationδ{E[ρ] + εi[1 −

∫

d3r|ϕi(r)|2]}/δϕi(r) = 0 yields the Kohn-Sham16

equations:
[

− ~
2

2me

∆ + Vion(r) +

∫

d3r′ Vee(r−r
′)ρ(r′) +

δExc[ρ]

δρ(r)

]

ϕi(r) = εi ϕi(r). (6)

These equations have the same form as a one-particle Schrödinger equation which,a pos-
teriori, justifies to calculate the kinetic energy by means of the one-particle wave-function
ansatz. The kinetic energy of aone-particleansatz which has the ground state density is,
then, given byEkin[ρmin] = −∑N

i=1〈ϕi|~2∆/(2me)|ϕi〉 if the ϕi are the self-consistent
(spin-degenerate) solutions of Eqs. (6) and (5) with lowest“energy” ǫi. Note, however,
that the one-particle potential of Eq. (6), i.e.,

Veff(r) = Vion(r) +

∫

d3r′Vee(r−r
′)ρ(r′) +

δExc[ρ]

δρ(r)
, (7)

is only an auxiliary potential which artificially arises in the approach to minimizeE[ρ].
Thus, the wave functionsϕi and the Lagrange parametersεi have no physical meaning at
this point. Altogether, these equations allow for the DFT/LDA calculation, see the flow
diagram Fig. 1.

2.2 Local density approximation

So far no approximations have been employed since the difficulty of the many-body prob-
lem was only transferred to the unknown functionalExc[ρ]. For this term the local density
approximation (LDA) which approximates the functionalExc[ρ] by a function that depends
on the local density only, i.e.,

Exc[ρ] →
∫

d3r ELDA
xc (ρ(r)), (8)

was found to be unexpectedly successful. Here,ELDA
xc (ρ(r)) is usually calculated from

the perturbative solution17 or the numerical simulation18 of the jellium problem which is
defined byVion(r) = const.

In principle DFT/LDA only allows one to calculate static properties like the ground
state energy or its derivatives. However, one of the major applications of LDA is the
calculation of band structures. To this end, the Lagrange parametersεi are interpreted
as the physical (one-particle) energies of the system underconsideration. Since the true
ground-state is not a simple one-particle wave-function, this is an approximation beyond
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First principles information:
atomic numbers, crystal structure (lattice, atomic positions)

Choose initial electronic densityρ(r)

Calculate effective potential using the LDA [Eq. (7)]

Veff(r) = Vion(r) +

∫

d3
r
′ Vee(r − r

′)ρ(r′) +
δExc[ρ]

δρ(r)

Solve Kohn-Sham equations [Eq. (6)]
[

− ~
2

2m
∇2 + Veff(r) − εi

]

ϕi(r) = 0

Calculate electronic density [Eq. (5)],

ρ(r) =

N
∑

i

|ϕi(r)|2

Iterate to self-consistency

Calculate band structureεi(k) [Eq. (6)], partial and total DOS, self-consistent
Hamiltonian [Eq. (11)]=⇒ LDA+DMFT, total energyE[ρ] [Eq. (3)], . . .

Figure 1. Flow diagram of the DFT/LDA calculations.

DFT. Actually, this approximation corresponds to the replacement of the Hamiltonian (1)
by

ĤLDA =
∑

σ

∫

d3r Ψ̂+(r, σ)

[

− ~
2

2me

∆ + Vion(r) +

∫

d3r′ ρ(r′)Vee(r−r
′)

+
δELDA

xc [ρ]

δρ(r)

]

Ψ̂(r, σ). (9)

For practical calculations one needs to expand the field operators w.r.t. a basisΦilm, e.g.,
a linearized muffin-tin orbital (LMTO)19 basis (i denotes lattice sites;l andm are orbital
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indices). In this basis,

Ψ̂+(r, σ) =
∑

ilm

ĉσ†ilmΦilm(r) (10)

such that the Hamiltonian (9) reads

ĤLDA =
∑

ilm,jl′m′,σ

(δilm,jl′m′ εilm n̂σilm + tilm,jl′m′ ĉσ†ilmĉ
σ
jl′m′). (11)

Here,n̂σilm = ĉσ†ilmĉ
σ
ilm,

tilm,jl′m′ =
〈

Φilm

∣

∣

∣
− ~

2∆

2me

+ Vion(r) +

∫

d3r′ρ(r′)Vee(r−r
′) +

δELDA
xc [ρ]

δρ(r)

∣

∣

∣
Φjl′m′

〉

(12)

for ilm 6= jl′m′ and zero otherwise;εilm denotes the corresponding diagonal part.
As for static properties, the LDA approach based on the self-consistent solution of

Hamiltonian (11) together with the calculation of the electronic density Eq. (5) [see the
flow diagram Fig. 1] has also been highly successful for band structure calculations –
but only for weakly correlated materials.2 It is not reliable when applied to correlated
materials and can even be completely wrong because it treatselectroniccorrelationsonly
very rudimentarily. For example, it predicts the antiferromagnetic insulator La2CuO4 to be
a non-magnetic metal20 and also completely fails to account for the high effective masses
observed in4f -based heavy fermion compounds.

2.3 Supplementing LDA with local Coulomb correlations

Of prime importance for correlated materials are the local Coulomb interactions between
d- andf -electrons on the same lattice site since these contributions are largest. This is due
to the extensive overlap (w.r.t. the Coulomb interaction) of these localized orbitals which
results in strong correlations. Moreover, the largest non-local contribution is the nearest-
neighbor density-density interaction which, to leading order in the number of nearest-
neighbor sites, yields only the Hartree term (see Ref. 4 and,also, Ref. 21) which is already
taken into account in the LDA. To take the local Coulomb interactions into account, one
can supplement the LDA Hamiltonian (11) with the local Coulomb matrix approximated
by the (most important) matrix elementsUσσ

′

mm′ (Coulomb repulsion and Z-component of
Hund’s rule coupling) andJmm′ (spin-flip terms of Hund’s rule coupling) between the
localized electrons (for which we assumei = id andl = ld):

Ĥ = ĤLDA − ĤU
LDA +

1

2

∑

i=id,l=ld

∑

mσ,m′σ′

′
Uσσ

′

mm′ n̂ilmσn̂ilm′σ′

−1

2

∑

i=id,l=ld

′
∑

mσ,m′

Jmm′ ĉ
†
ilmσ ĉ

†
ilm′σ̄ ĉilm′σ ĉilmσ̄ . (13)

Here, the prime on the sum indicates that at least two of the indices of an operator have to be
different, and̄σ =↓(↑) for σ =↑(↓). A termĤU

LDA is subtracted to avoid double-counting
of those contributions of the local Coulomb interaction already contained in̂HLDA. Since
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there does not exist a direct microscopic or diagrammatic link between the model Hamil-
tonian approach and LDA it is not possible to expressĤU

LDA rigorously in terms ofU , J
andρ. A commonly employed approximation for̂HU

LDA assumes the LDA energyEULDA

of ĤU
LDA to be22

EULDA =
1

2
Ūnd(nd − 1) − 1

2
J

∑

σ

ndσ(ndσ̄ − 1). (14)

Here,ndσ =
∑

m nildmσ =
∑

m〈n̂ildmσ〉 is the total number of interacting electrons per
spin,nd =

∑

σ ndσ, Ū is the average Coulomb repulsion andJ the average exchange or
Hund’s rule coupling. In typical applications we haveU↑↓

mm ≡ U , Jmm′ ≡ J , Uσσ
′

mm′ =
U −J −Jδσσ′ form 6= m′ (here, the first termJ is due to the reduced Coulomb repulsion
between different orbitals and the second termJδσσ′ directly arises from the Z-component
of Hund’s rule coupling), and (with the number of interacingorbitalsM )

Ū =
U + (M − 1)(U − J) + (M − 1)(U − 2J)

2M − 1
.

Since the one-electron LDA energies can be obtained from thederivatives of the total
energy w.r.t. the occupation numbers of the corresponding states, the one-electron energy
level for thenon-interacting, paramagneticstates of (13) is obtained as22

ε0ildm ≡ d

dnildm
(ELDA − EULDA) = εildm − Ū(nd −

1

2
) +

J

2
(nd − 1) (15)

whereεildm is defined in (11) andELDA is the total energy calculated from̂HLDA (11).
Furthermore we usedndσ = nd/2 in the paramagnet.

This leads to a new Hamiltonian describing the non-interacting system

Ĥ0
LDA =

∑

ilm,jl′m′,σ

(δilm,jl′m′ε0ilmn̂
σ
ilm + tilm,jl′m′ ĉσ†ilmĉ

σ
jl′m′), (16)

whereε0ildm is given by (15) for the interacting orbitals andε0ilm = εilm for the non-

interacting orbitals. While it is not clear at present how tosystematically subtract̂HU
LDA

one should note that the subtraction of a Hartree-type energy does not substantially affect
theoverall behavior of a strongly correlated paramagnetic metal in thevicinity of a Mott-
Hubbard metal-insulator transition (see also Section 2.7).

In the following, it is convenient to work in reciprocal space where the matrix elements
of Ĥ0

LDA, i.e., the LDA one-particle energies without the local Coulomb interaction, are
given by

(H0
LDA(k))qlm,q′ l′m′ = (HLDA(k))qlm,q′ l′m′

−δqlm,q′l′m′δql,qdld

[

Ū(nd −
1

2
) − J

2
(nd − 1)

]

. (17)

Here,q is an index of the atom in the elementary unit cell,(HLDA(k))qlm,q′ l′m′ is the
matrix element of (11) ink-space, andqd denotes the atoms with interacting orbitals in
the unit cell. The non-interacting part,̂H0

LDA, supplemented with the local Coulomb in-
teraction forms the (approximated)ab initio Hamiltonian for a particular material under
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investigation:

Ĥ = Ĥ0
LDA +

1

2

∑

i=id,l=ld

∑

mσ,m′σ′

′
Uσσ

′

mm′ n̂ilmσn̂ilm′σ′

−1

2

∑

i=id,l=ld

∑

mσ,m′

′
Jmm′ ĉ

†
ilmσ ĉ

†
ilm′σ̄ ĉilm′σ ĉilmσ̄ (18)

To make use of thisab initio Hamiltonian it is still necessary to determine the Coulomb
interactionU . To this end, one can calculate the LDA ground state energy for different
numbers of interacting electronsnd (”constrained LDA”23) and employ Eq. (14) whose
second derivative w.r.t.nd yieldsU . However, one should keep in mind that, while the
total LDA spectrum is rather insensitive to the choice of thebasis, the calculation ofU
strongly depends on the shape of the orbitals which are considered to be interacting. E.g.,
for LaTiO3 at a Wigner Seitz radius of 2.37 a.u. for Ti a LMTO-ASA calculation24 using
the TB-LMTO-ASA code19 yieldedU = 4.2 eV in comparison to the valueU = 3.2 eV
calculated by ASA-LMTO within orthogonal representation.25 Thus, an appropriate basis
like LMTO is mandatory and, even so, a significant uncertainty in U remains.

2.4 Dynamical mean-field theory

The many-body extension of LDA, Eq. (18), was proposed by Anisimov et al.22 in the
context of their LDA+U approach. Within LDA+U the Coulomb interactions of (18) are
treated within the Hartree-Fock approximation. Hence, LDA+U does not contain true
many-body physics. While this approach is successful in describing long-range ordered,
insulating states of correlated electronic systems it fails to describe strongly correlated
paramagneticstates. To go beyond LDA+U and capture the many-body nature of the
electron-electron interaction, i.e., the frequency dependence of the self-energy, various ap-
proximation schemes have been proposed and applied recently.12, 26–30 One of the most
promising approaches, first implemented by Anisimov et al.,12 is to solve (18) within
DMFT3–11 (”LDA+DMFT”). Of all extensions of LDA only the LDA+DMFT approach
is presently able to describe the physics ofstronglycorrelated, paramagnetic metals with
well-developed upper and lower Hubbard bands and a narrow quasiparticle peak at the
Fermi level. This characteristic three-peak structure is asignature of the importance of
many-body effects.7, 8

During the last ten years, DMFT has proved to be a successful approach to investigate
strongly correlated systems with local Coulomb interactions.11 It becomes exact in the
limit of high lattice coordination numbers3, 4 and preserves the dynamics of local interac-
tions. Hence, it represents adynamicalmean-field approximation. In this non-perturbative
approach the lattice problem is mapped onto an effective single-site problem (see Fig. 2)
which has to be determined self-consistently together withthek-integrated Dyson equation
connecting the self energyΣ and the Green functionG at frequencyω:

Gqlm,q′l′m′(ω) =
1

VB

∫

d3k
(

[

ω1 + µ1 −H0
LDA(k) − Σ(ω)

]−1
)

qlm,q′l′m′

. (19)

Here,1 is the unit matrix,µ the chemical potential, the matrixH0
LDA(k) is defined in

(17),Σ(ω) denotes the self-energy matrix which is non-zero only between the interacting
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lm

1
2

DMFT

  Σ   (ω)σ

Figure 2. If the number of neighboring lattice sites goes to infinity, the central limit theorem holds and fluctua-
tions from site-to-site can be neglected. This means that the influence of these neighboring sites can be replaced
by a mean influence, the dynamical mean-field described by theself energyΣσ

lm
(ω). This DMFT problem is

equivalent to the self-consistent solution of thek-integrated Dyson equation (21) and the multi-band Anderson
impurity model Eq. (20).

orbitals,[...]−1 implies the inversion of the matrix with elementsn (=qlm), n′(=q′l′m′),
and the integration extends over the Brillouin zone with volumeVB.

The DMFT single-site problem depends onG(ω)−1 = G(ω)−1 + Σ(ω) and is
equivalent7, 8 to an Anderson impurity model (the history and the physics ofthis model
is summarized by Anderson in Ref. 31) if its hybridization∆(ω) satisfiesG−1(ω) =
ω −

∫

dω′∆(ω′)/(ω − ω′). The local one-particle Green function at a Matsubara fre-
quencyiων = i(2ν + 1)π/β (β: inverse temperature), orbital indexm (l = ld, q = qd),
and spinσ is given by the following functional integral over Grassmann variablesψ and
ψ∗:

Gσνm = − 1

Z

∫

D[ψ]D[ψ∗]ψσνmψ
σ∗
νme

A[ψ,ψ∗,G−1]. (20)

Here,Z =
∫

D[ψ]D[ψ∗]ψσνmψ
σ∗
νm exp(A[ψ, ψ∗,G−1]) is the partition function and the

single-site actionA has the form (the interaction part ofA is in terms of the “imaginary
time” τ , i.e., the Fourier transform ofων)

A[ψ, ψ∗,G−1] =
∑

ν,σ,m

ψσ∗νm(Gσνm)−1ψσνm

−1

2

∑

mσ,mσ′

′

Uσσ
′

mm′

β
∫

0

dτ ψσ∗m (τ)ψσm (τ)ψσ
′∗
m′ (τ)ψσ

′

m′ (τ)

+
1

2

∑

mσ,m

′

Jmm′

β
∫

0

dτ ψσ∗m (τ)ψσ̄m(τ)ψσ̄∗m′ (τ)ψσm′ (τ) . (21)

This single-site problem (20) has to be solved self-consistently together with thek-
integrated Dyson equation (19) to obtain the DMFT solution of a given problem, see the
flow diagram Fig. 3.

Due to the equivalence of the DMFT single-site problem and the Anderson impurity
problem a variety of approximative techniques have been employed to solve the DMFT
equations, such as the iterated perturbation theory (IPT)7, 11 and the non-crossing approxi-
mation (NCA),32–34as well as numerical techniques like quantum Monte Carlo simulations
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Choose an initial self-energyΣ

Iterate withΣ = Σnew until convergence, i.e.||Σ − Σnew|| < ǫ

CalculateG from Σ via the k-integrated Dyson Eq. (19):

Gqlm,q′l′m′(ω) =
1

VB

∫

d3k
(

[

ω1 + µ1 −H0
LDA(k) − Σ(ω)

]−1
)

qlm,q′l′m′

G = (G−1 + Σ)−1

CalculateG fromG via the DMFT single-site problem Eq. (20)

Gσνm = − 1

Z

∫

D[ψ]D[ψ∗]ψσνmψ
σ∗
νme

A[ψ,ψ∗,G−1]

Σnew = G−1 −G−1

Figure 3. Flow diagram of the DMFT self-consistency cycle.

(QMC),35 exact diagonalization (ED),11, 36 or numerical renormalization group (NRG).37

QMC and NCA will be discussed in more detail in Section 2.5 and2.6, respectively. IPT is
non-self-consistent second-order perturbation theory inU for the Anderson impurity prob-
lem (20) at half-filling. It represents an ansatz that also yields the correct perturbational
U2-term and the correct atomic limit for the self-energy off half-filling, 38 for further details
see Refs. 12, 26, 38. ED directly diagonalizes the Anderson impurity problem at a limited
number of lattice sites and orbitals. NRG first replaces the conduction band by a discrete
set of states atDΛ−n (D: bandwidth;n = 0, ...,Ns) and then diagonalizes this problem
iteratively with increasing accuracy at low energies, i.e., with increasingNs. In principle,
QMC and ED are exact methods, but they require an extrapolation, i.e., the discretization
of the imaginary time∆τ → 0 (QMC) or the number of lattice sites of the respective
impurity modelNs → ∞ (ED), respectively.

In the context of LDA+DMFT we refer to the computational schemes to solve the
DMFT equations discussed above as LDA+DMFT(X) where X=IPT,12 NCA,30 QMC24

have been investigated in the case of La1−xSrxTiO3. The same strategy was formulated
by Lichtenstein and Katsnelson26 as one of their LDA++ approaches. Lichtenstein and
Katsnelson applied LDA+DMFT(IPT),42 and were the first to use LDA+DMFT(QMC),43
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to investigate the spectral properties of iron. Recently, also V2O3,44 Ca2−xSrxRuO4,45, 46

Ni,47 Fe,47 Pu,48, 49 and Ce50, 51 have been studied by LDA+DMFT. Realistic investiga-
tions of itinerant ferromagnets (e.g., Ni) have also recently become possible by combining
density functional theory with multi-band Gutzwiller wavefunctions.52

2.5 QMC method to solve DMFT

The self-consistency cycle of the DMFT (Fig. 3) requires a method to solve for the dynam-
ics of the single-site problem of DMFT, i.e., Eq. (20). The QMC algorithm by Hirsch and
Fye35 is a well established method to find a numerically exact solution for the Anderson
impurity model and allows one to calculate the impurity Green functionG at a givenG−1

as well as correlation functions. In essence, the QMC technique maps the interacting elec-
tron problem Eq. (20) onto a sum of non-interacting problemswhere the single particle
moves in a fluctuating, time-dependent field and evaluates this sum by Monte Carlo sam-
pling, see the flow diagram Fig. 4 for an overview. To this end,the imaginary time interval
[0, β] of the functional integral Eq. (20) is discretized intoΛ steps of size∆τ = β/Λ,
yielding support pointsτl = l∆τ with l = 1 . . .Λ. Using this Trotter discretization, the
integral

∫ β

0 dτ is transformed to the sum
∑Λ

l=1 ∆τ and the exponential terms in Eq. (20)

can be separated via the Trotter-Suzuki formula for operatorsÂ andB̂53

e−β(Â+B̂) =

Λ
∏

l=1

e−∆τÂe−∆τB̂ + O(∆τ), (22)

which is exact in the limit∆τ → 0. The single site actionA of Eq. (21) can now be written
in the discrete, imaginary time as

A[ψ, ψ∗,G−1] = ∆τ2
Λ−1
∑

σm l,l′=0

ψσml
∗Gσm−1(l∆τ − l′∆τ)ψσml′

−1

2
∆τ

∑

′

mσ,m′σ′
Uσσ

′

mm′

Λ−1
∑

l=0

ψσml
∗ψσmlψ

σ′

m′l

∗
ψσ

′

m′l, (23)

where the first term was Fourier-transformed from Matsubarafrequencies to imaginary
time. In a second step, theM(2M − 1) interaction terms in the single site actionA are
decoupled by introducing a classical auxiliary fieldsσσ

′

lmm′ :

exp

{

∆τ

2
Uσσ

′

mm′(ψσml
∗ψσml − ψσ

′

m′l

∗
ψσ

′

m′l)
2

}

=

1

2

∑

sσσ′

lmm′
=±1

exp
{

∆τλσσ
′

lmm′sσσ
′

lmm′(ψσml
∗ψσml − ψσ

′

m′l

∗
ψσ

′

m′l)
}

, (24)

wherecosh(λσσ
′

lmm′) = exp(∆τUσσ
′

mm′/2) andM is the number of interacting orbitals. This
so-called discrete Hirsch-Fye-Hubbard-Stratonovich transformation can be applied to the
Coulomb repulsion as well as the Z-component of Hund’s rule coupling.54 It replaces the
interacting system by a sum ofΛM(2M−1) auxiliary fieldssσσ

′

lmm′ . The functional integral
can now be solved by a simple Gauss integration because the Fermion operators only enter

11



quadratically, i.e., for a given configurations = {sσσ′

lmm′} of the auxiliary fields the system
is non-interacting. The quantum mechanical problem is thenreduced to a matrix problem

Gσ̃m̃l1l2 =
1

Z
1

2

∑

l

′
∑

m′σ′,m′′σ′′

∑

sσ′′σ′

lm′′m′
=±1

[

(M σ̃s
m̃ )−1

]

l1l2

∏

mσ

detMσs
m (25)

with the partition functionZ, the matrix

M
σ̃s
m̃ = ∆τ2[Gσ

m
−1 + Σσm]e−λ̃

σs

m + 1− e−λ̃
σs

m (26)

and the elements of the matrix̃λσsm

λ̃σsmll′ = −δll′
∑

m′σ′

λσσ
′

mm′ σ̃σσ
′

mm′sσσ
′

lmm′ . (27)

Here σ̃σσ
′

mm′ = 2Θ(σ′ − σ + δσσ′ [m′ − m] − 1) changes sign if(mσ) and (m′σ′) are
exchanged. For more details, e.g., for a derivation of Eq. (26) for the matrixM, see
Refs. 11,35.

Since the sum in Eq. (25) consists of2ΛM(2M−1) addends, a complete summation
for largeΛ is computationally impossible. Therefore the Monte Carlo method, which is
often an efficient way to calculate high-dimensional sums and integrals, is employed for
importance sampling of Eq. (25). In this method, the integrand F (x) is split up into a
normalized probability distributionP and the remaining termO:

∫

dxF (x) =

∫

dxO(x)P (x) ≡ 〈O〉P (28)

with
∫

dxP (x) = 1 and P (x) ≥ 0. (29)

In statistical physics, the Boltzmann distribution is often a good choice for the functionP :

P (x) =
1

Z exp(−βE(x)). (30)

For the sum of Eq. (25), this probability distribution translates to

P (s) =
1

Z
∏

mσ

detMσs
m (31)

with the remaining term

O(s)σ̃m̃l1l2 =
[

(M σ̃s
m̃ )−1

]

l1l2
. (32)

Instead of summing over all possible configurations, the Monte Carlo simulation gen-
erates configurationsxi with respect to the probability distributionP (x) and averages the
observableO(x) over thesexi. Therefore the relevant parts of the phase space with a large
Boltzmann weight are taken into account to a greater extent than the ones with a small
weight, coining the name importance sampling for this method. With the central limit
theorem one gets forN statistically independent addends the estimate

〈O〉P =
1

N

N
∑

i=1
xi∈P(x)

O(xi) ±
1√
N

√

〈O2〉P − 〈O〉2P . (33)
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Choose random auxiliary field configurations = {sσσ′

lmm′}

Calculate the current Green functionGcur from Eq. (32)

(Gcur)
σ̃
m̃l1l2

=
[

(M σ̃s
m̃ )−1

]

l1l2

with M from Eq. (26) and the inputGσm(ων)
−1 = Gσm(ων)

−1 + Σσm(ων).

Do NWU times (warm up sweeps)

MC-sweep(Gcur, s)

Do NMC times (measurement sweeps)

MC-sweep(Gcur, s)

G = G + Gcur/NMC

Figure 4. Flow diagram of the QMC algorithm to calculate the Green function matrixG using the procedure
MC-sweepof Fig. 5.

ChooseM(2M − 1)Λ times a set (l mm′ σ σ′),
definesnew to bes except for the elementsσσ

′

lmm′ which has opposite sign.

Calculate flip probabilityPs→snew = min{1, P (snew)/P (s)} with

P (snew)/P (s) =
∏

mσ

detMσsnew
m /

∏

mσ

detMσs
m

andM from Eq. (26).
`````````````````````̀

�������������

Random number∈ (0, 1) < Ps→snew ?

yes no

s = snew; recalculateGcur according to Eq. (32). Keeps

Figure 5. ProcedureMC-sweepusing the Metropolis55 rule to change the sign ofsσσ′

lmm′ . The recalculation of

Gcur, i.e., the matrixM of Eq. (26), simplifies toO(Λ2) operations if only onesσσ′

lmm′ changes sign.11,35
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Here, the error and with it the number of needed addendsN is nearly independent of
the dimension of the integral. The computational effort forthe Monte Carlo method is
therefore only rising polynomially with the dimension of the integral and not exponentially
as in a normal integration. Using a Markov process and singlespin-flips in the auxiliary
fields, the computational cost of the algorithm in leading order ofΛ is

2aM(2M − 1)Λ3 × number of MC-sweeps, (34)

wherea is the acceptance rate for a single spin-flip.
The advantage of the QMC method (for the algorithm see the flowdiagram Fig. 4) is

that it is (numerically) exact. It allows one to calculate the one-particle Green function as
well as two-particle (or higher) Green functions. On present workstations the QMC ap-
proach is able to deal with up to seveninteractingorbitals and temperatures above about
room temperature. Very low temperatures are not accessiblebecause the numerical effort
grows likeΛ3 ∝ 1/T 3 . Since the QMC approach calculatesG(τ) orG(iωn) with a sta-
tistical error, it also requires the maximum entropy method56 to obtain the Green function
G(ω) at real (physical) frequenciesω.

2.6 NCA method to solve DMFT

The NCA approach is a resolvent perturbation theory in the hybridization parameter∆(ω)
of the effective Anderson impurity problem.32 Thus, it is reliable if the Coulomb interac-
tionU is large compared to the band-width and also offers a computationally inexpensive
approach to check the general spectral features in other situations.

To see how the NCA can be adapted for the DMFT, let us rewrite Eq. (19) as

Gσ(z) =
1

Nk

∑

k

[

z −H0
LDA(k) − Σ(z)

]−1
(35)

wherez = ω+ i0+ +µ. Again,H0
LDA(k), Σ(z) and henceG0

σ(ζ) andGσ(z) are matrices
in orbital space. Note thatΣ(z) has nonzero entries for the correlated orbitals only.

On quite general grounds, Eq. (35) can be cast into the form

Gσ(z) =
1

z − E0 − Σσ(z) − ∆σ(z)
(36)

where

E0 =
1

Nk

∑

k

H0
LDA(k) (37)

with the number ofk pointsNk and

lim
ω→±∞

ℜe{∆σ(ω + iδ)} = 0 . (38)

Given the the matrixE0, the Coulomb matrixU and the hybridization matrix∆σ(z),
we are now in a position to set up a resolvent perturbation theory with respect to∆σ(z).
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To this end, we first have to diagonalize the local Hamiltonian

Hlocal =
∑

σ

∑

qml

∑

q′m′l′

c†qlmσE
0
qlm,q′l′m′cqlmσ

+
1

2

∑

mσ

∑

m′σ′

Uσσ
′

mm′nqdldmσnqdldm′σ′

−1

2

∑

mσ

∑

m′

Jmm′c
†
qdldmσ

c†qdldm′σ̄cqdldm′σcqdldmσ̄

=
∑

α

Eα|α〉〈α|

(39)

with local eigenstates|α〉 and energiesEα. In contrast to the QMC, this approach allows
one to take into account the full Coulomb matrix plus spin-orbit coupling.

With the states|α〉 defined above, the fermionic operators with quantum numbersκ =
(q, l,m) are expressed as

c†κσ =
∑

α,β

(

Dκσ
βα

)∗ |α〉〈β| ,

cκσ =
∑

α,β

Dκσ
αβ |α〉〈β| .

(40)

The key quantity for the resolvent perturbation theory is the resolventR(z), which obeys
a Dyson equation32

R(z) = R0(z) +R0(z)S(z)R(z) , (41)

whereR0
αβ(z) = 1/(z − Eα)δαβ andSαβ(z) denotes the self-energy for the local states

due to the coupling to the environment through∆(z).
The self-energySαβ(z) can be expressed as power series in the hybridization∆(z).32

Retaining only the lowest-, i.e.2nd-order terms leads to a set of self-consistent integral
equations

Sαβ(z) =
∑

σ

∑

κκ′

∑

α′β′

∫

dε

π
f(ε) (Dκσ

α′α)
∗
Γκκ

′

σ (ε)Rα′β′(z + ε)Dκ′σ
β′β

+
∑

σ

∑

κκ′

∑

α′β′

∫

dε

π
(1 − f(ε))Dκσ

α′αΓκκ
′

σ (ε)Rα′β′(z − ε)
(

Dκ′σ
β′β

)∗
(42)

to determine Sαβ(z), where f(ε) denotes Fermi’s function andΓ(ε) =
−ℑm {∆(ε+ i0+)}. The set of equations (42) are in the literature referred to as
non-crossing approximation (NCA), because, when viewed interms of diagrams, they
contain no crossing of band-electron lines. In order to close the cycle for the DMFT, we
still have to calculate the true local Green functionGσ(z). This, however, can be done
within the same approximation with the result

Gκκ
′

σ (iω) =
1

Zlocal

∑

α,α′

∑

ν,ν′

Dκσ
αα′

(

Dκ′σ
νν′

)∗
∮

dze−βz

2πi
Rαν(z)Rα′ν′(z + iω) . (43)
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Here,Zlocal =
∑

α

∮

dze−βz

2πi
Rαα(z) denotes the local partition function andβ is the

inverse temperature.
Like any other technique, the NCA has its merits and disadvantages. As a self-

consistent resummation of diagrams it constitutes a conserving approximation to the An-
derson impurity model. Furthermore, it is a (computationally) fast method to obtain dy-
namical results for this model and thus also within DMFT. However, the NCA is known to
violate Fermi liquid properties at temperatures much lowerthan the smallest energy scale
of the problem and whenever charge excitations become dominant.34, 57 Hence, in some
parameter ranges it fails in the most dramatic way and must therefore be applied with
considerable care.34

2.7 Simplifications for transition metal oxides with well separated eg- and
t2g-bands

Many transition metal oxides are cubic perovskites, with only a slight distortion of the
cubic crystal structure. In these systems the transition metal d-orbitals lead to strong
Coulomb interactions between the electrons. The cubic crystal-field of the oxygen causes
thed-orbitals to split into three degeneratet2g- and two degenerateeg-orbitals. This split-
ting is often so strong that thet2g- or eg-bands at the Fermi energy are rather well sepa-
rated from all other bands. In this situation the low-energyphysics is well described by
taking only the degenerate bands at the Fermi energy into account. Without symmetry
breaking, the Green function and the self-energy of these bands remain degenerate, i.e.,
Gqlm,q′l′m′(z) = G(z)δqlm,q′l′m′ andΣqlm,q′l′m′(z) = Σ(z)δqlm,q′l′m′ for l = ld and
q = qd (whereld andqd denote the electrons in the interacting band at the Fermi energy).
Downfolding to a basis with these degenerateqd-ld-bands results in an effective Hamilto-
nianH0 eff

LDA (where indicesl = ld andq = qd are suppressed)

Gmm′(ω) =
1

VB

∫

d3k
(

[ω1 + µ1 −H0 eff
LDA(k) − Σ(ω)]−1

)

mm′
. (44)

Due to the diagonal structure of the self-energy the degenerate interacting Green function
can be expressed via the non-interacting Green functionG0(ω):

G(ω)=G0(ω − Σ(ω)) =

∫

dǫ
N0(ǫ)

ω − Σ(ω) − ǫ
. (45)

Thus, it is possible to use the Hilbert transformation of theunperturbed LDA-calculated
density of states (DOS)N0(ǫ), i.e., Eq. (45), instead of Eq. (19). This simplifies the
calculations considerably. With Eq. (45) also some conceptual simplifications arise: (i)
the subtraction ofĤU

LDA in (45) only results in an (unimportant) shift of the chemical
potential and, thus, the exact form ofĤU

LDA is irrelevant; (ii) Luttinger’s theorem of Fermi
pinning holds, i.e., the interacting DOS at the Fermi energyis fixed at the value of the non-
interacting DOS atT = 0 within a Fermi liquid; (iii) as the number of electrons within the
different bands is fixed, the LDA+DMFT approach is automatically self-consistent.

In this context it should be noted that the approximation Eq.(45) is justified only if the
overlap between thet2g orbitals and the other orbitals is rather weak.
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2.8 Extensions of the LDA+DMFT scheme

In the present form of the LDA+DMFT scheme the band-structure input due to LDA and
the inclusion of the electronic correlations by DMFT are performed as successive steps
without subsequent feedback. In general, the DMFT solutionwill result in a change of the
occupation of the different bands involved. This changes the electron densityρ(r) and,
thus, results in a new LDA-Hamiltonian̂HLDA (11) sinceĤLDA depends onρ(r). At
the same time also the Coulomb interactionU changes and needs to be determined by a
new constrained LDA calculation. In aself-consistentLDA+DMFT scheme,HLDA andU
would define a new Hamiltonian (18) which again needs to be solved within DMFT, etc.,
until convergence is reached:

6

-- -ρ(r)
DMFT

HLDA, U nilm ρ(r)

(46)

Without Coulomb interaction (U = 0) this scheme reduces to the self-consistent solution of
the Kohn-Sham equations. A self-consistency scheme similar to Eq. (46) was employed by
Savrasov and Kotliar49 in their calculation of Pu. Anab initio DMFT scheme formulated
directly in the continuum was recently proposed by Chitra and Kotliar.58

3 Comparison of different methods to solve DMFT: the model system
La1−xSrxTiO3

The stoichiometric compound LaTiO3 is a cubic perovskite with a small orthorhombic
distortion (∠ T i − O − T i ≈ 155◦)59 and is an antiferromagnetic insulator60 below
TN = 125 K.61 AboveTN , or at low Sr-dopingx, and neglecting the small orthorhombic
distortion (i.e., considering a cubic structure with the same volume), LaTiO3 is a strongly
correlated, but otherwise simple paramagnet with onlyone3d-electron on the trivalent Ti
sites. This makes the system a perfect trial candidate for the LDA+DMFT approach.

The LDA band-structure calculation for undoped (cubic) LaTiO3 yields the DOS
shown in Fig. 6 which is typical for early transition metals.The oxygen bands, rang-
ing from−8.2 eV to−4.0 eV, are filled such that Ti is three-valent. Due to the crystal-field
splitting, the Ti 3d-bands separates into two emptyeg-bands and three degeneratet2g-
bands. Since thet2g-bands at the Fermi energy are well separated also from the other bands
we employ the approximation introduced in section 2.5 whichallows us to work with the
LDA DOS [Eq. (45)] instead of the full one-particle HamiltonianH0

LDA of [Eq. (19)]. In
the LDA+DMFT calculation, Sr-dopingx is taken into account by adjusting the chemical
potential to yieldn = 1 − x = 0.94 electrons within thet2g-bands, neglecting effects
disorder and thex-dependence of the LDA DOS (note, that Sr and Ti have a very similar
band structure within LDA). There is some uncertainty in theLDA-calculated Coulomb
interaction parameterU ∼ 4 − 5 eV (for a discussion see Ref. 24) which is here assumed
to be spin- and orbital-independent. In Fig. 7, results for the spectrum of La0.94Sr0.06TiO3

as calculated by LDA+DMFT(IPT, NCA, QMC) for the same LDA DOSat T ≈ 1000 K
andU = 4 eV are compared.24 In Ref. 24 the formerly presented IPT12 and NCA30 spec-
tra were recalculated to allow for a comparison at exactly the same parameters. All three
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Figure 6. Densities of states of LaTiO3 calculated with LDA-LMTO. Upper figure: total DOS; lower figure:
partialt2g (solid lines) andeg (dashed lines) DOS [reproduced from Ref.24].

methods yield the typical features of strongly correlated metallic paramagnets: a lower
Hubbard band, a quasi-particle peak (note that IPT producesa quasi-particle peak only
below about 250K which is therefore not seen here), and an upper Hubbard band. By
contrast, within LDA the correlation-induced Hubbard bands are missing and only a broad
central quasi-particle band (actually a one-particle peak) is obtained (Fig. 6).

While the results of the three evaluation techniques of the DMFT equations (the ap-
proximations IPT, NCA and the numerically exact method QMC)agree on a qualitative
level, Fig. 7 reveals considerable quantitative differences. In particular, the IPT quasi-
particle peak found at low temperatures (see right inset of Fig. 7) is too narrow such that
it disappears already at about 250 K and is, thus, not presentatT ≈ 1000 K. A similarly
narrow IPT quasi-particle peak was found in a three-band model study with Bethe-DOS
by Kajueter and Kotliar.38 Besides underestimating the Kondo temperature, IPT also pro-
duces notable deviations in the shape of the upper Hubbard band. Although NCA comes
off much better than IPT it still underestimates the width ofthe quasiparticle peak by a
factor of two. Furthermore, the position of the quasi-particle peak is too close to the lower
Hubbard band. In the left inset of Fig. 7, the spectra at the Fermi level are shown. At the
Fermi level, where at sufficiently low temperatures the interacting DOS should be pinned
at the non-interacting value, the NCA yields a spectral function which is almost by a fac-
tor of two too small. The shortcomings of the NCA-results, with a too small low-energy
scale and too much broadened Hubbard bands for multi-band systems, are well understood
and related to the neglect of exchange type diagrams.63 Similarly, the deficiencies of the
IPT-results are not entirely surprising in view of the semi-phenomenological nature of this
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Figure 7. Spectrum of La0.94Sr0.06TiO3 as calculated by LDA+DMFT(X) atT = 0.1 eV (≈ 1000 K) and
U = 4 eV employing the approximations X=IPT, NCA, and numerically exact QMC. Inset left: Behavior at
the Fermi level including the LDA DOS. Inset right: X=IPT andNCA spectra atT = 80 K [reproduced from
Ref.24].

approximation, especially for a system off half filling.
This comparison shows that the choice of themethodused to solve the DMFT equations

is indeedimportant, and that, at least for the present system, the approximations IPT and
NCA differ quantitatively from the numerically exact QMC. Nevertheless, the NCA gives
a rather good account of the qualitative spectral features and, because it is fast and can
often be applied to comparatively low temperatures, can yield an overview of the physics
to be expected.

Photoemission spectra provide a direct experimental tool to study the electronic struc-
ture and spectral properties of electronically correlatedmaterials. A comparison of
LDA+DMFT(QMC) at 1000 K65 with the experimental photoemission spectrum64 of
La0.94Sr0.06TiO3 is presented in Fig 8. To take into account the uncertainty inU ,24 we
present results forU = 3.2, 4.25 and5 eV. All spectra are multiplied with the Fermi step
function and are Gauss-broadened with a broadening parameter of 0.3 eV to simulate the
experimental resolution.64 LDA band structure calculations, the results of which are also
presented in Fig. 8, clearly fail to reproduce the broad bandobserved in the experiment at 1-
2 eV below the Fermi energy.64 Taking the correlations between the electrons into account,
this lower band is easily identified as the lower Hubbard bandwhose spectral weight orig-
inates from the quasi-particle band at the Fermi energy and which increases withU . The
best agreement with experiment concerning the relative intensities of the Hubbard band
and the quasi-particle peak and, also, the position of the Hubbard band is found forU = 5
eV. The valueU = 5 eV is still compatible with theab initio calculation of this parameter
within LDA.24 One should also bear in mind that photoemission experimentsare sensitive
to surface properties. Due to the reduced coordination number at the surface the bandwidth
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Figure 8. Comparison of the experimental photoemission spectrum,64 the LDA result, and the
LDA+DMFT(QMC) calculation for La0.94Sr0.06TiO3 (i.e., 6% hole doping) and different Coulomb interaction
U = 3.2, 4.25, and5 eV [reproduced from Ref.24].

is likely to be smaller, and the Coulomb interaction less screened, i.e., larger. Both effects
make the system more correlated and, thus, might also explain why better agreement is
found forU = 5 eV. Besides that, also the polycrystalline nature of the sample, as well
as spin and orbital66 fluctuation not taken into account in the LDA+DMFT approach,will
lead to a further reduction of the quasi-particle weight.

4 Mott-Hubbard metal-insulator transition in V 2O3

One of the most famous examples of a cooperative electronic phenomenon occurring
at intermediate coupling strengths is the transition between a paramagnetic metal and a
paramagnetic insulator induced by the Coulomb interactionbetween the electrons – the
Mott-Hubbard metal-insulator transition. The question concerning the nature of this tran-
sition poses one of the fundamental theoretical problems incondensed matter physics.67

Correlation-induced metal-insulator transitions (MIT) are found, for example, in transition
metal oxides with partially filled bands near the Fermi level. For such systems band theory
typically predicts metallic behavior. The most famous example is V2O3 doped with Cr as
shown in Fig. 9. While at low temperatures V2O3 is an antiferromagnetic insulator with
monoclinic crystal symmetry, it has a corundum structure inthe high-temperature param-
agnetic phase. All transitions shown in the phase diagram are of first order. In the case
of the transitions from the high-temperature paramagneticphases into the low-temperature
antiferromagnetic phase this is naturally explained by thefact that the transition is accom-
panied by a change in crystal symmetry. By contrast, the crystal symmetry across the MIT
in the paramagnetic phase remains intact, since only the ratio of thec/a axes changes dis-
continuously. This may be taken as an indication for the predominantly electronic origin
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effects the lattice constants in a similar way as applying pressure (generated either by a hydrostatic pressureP , or
by changing theV -concentration from V2O3 to V2−yO3) and leads to a Mott-Hubbard transition between the
paramagneticinsulator (PI) and metal (PM). At lower temperatures, a Mott-Heisenberg transition between the
paramagnetic metal (PM) and theantiferromagneticinsulator (AFI) is observed.

of this transition which is not accompanied by any conventional long-range order. From a
models point of view the MIT is triggered by a change of the ratio of the Coulomb interac-
tionU relative to the bandwidthW . Originally, Mott considered the extreme limitsW = 0
(when atoms are isolated and insulating) andU = 0 where the system is metallic. While it
is simple to describe these limits, the crossover between them, i.e., the metal-insulator tran-
sition itself, poses a very complicated electronic correlation problem. Among others, this
metal-insulator transition has been addressed by Hubbard in various approximations69 and
by Brinkman and Rice within the Gutzwiller approximation.70 During the last few years,
our understanding of the MIT in the one-band Hubbard model has considerably improved,
in particular due to the application of dynamical mean-fieldtheory.71

Both the paramagnetic metal V2O3 and the paramagnetic insulator
(V0.962Cr0.038)2O3 have the same corundum crystal structure with only slightly
different lattice parameters.72, 73 Nevertheless, within LDA both phases are found to be
metallic (see Fig. 10). The LDA DOS shows a splitting of the five Vanadium d-orbitals
into threet2g states near the Fermi energy and twoeσg states at higher energies. This
reflects the (approximate) octahedral arrangement of oxygen around the vanadium atoms.
Due to the trigonal symmetry of the corundum structure thet2g states are further split
into onea1g band and two degenerateeπg bands, see Fig. 10. The only visible difference
between(V0.962Cr0.038)2O3 andV2O3 is a slight narrowing of thet2g andeσg bands by
≈ 0.2 and0.1 eV, respectively as well as a weak downshift of the centers ofgravity of
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Figure 10. Left: Scheme of the3d levels in the corundum crystal structure. Right: Partial LDA DOS of the 3d
bands for paramagnetic metallicV2O3 and insulating(V0.962Cr0.038)2O3 [reproduced from Ref.44].

both groups of bands forV2O3. In particular, the insulating gap of the Cr-doped system is
seen to be missing in the LDA DOS. Here we will employ LDA+DMFT(QMC) to show
explicitly that the insulating gap is caused by the electronic correlations. In particular, we
make use of the simplification for transition metal oxides described in Section 2.7 and
restrict the LDA+DMFT(QMC) calculation to the threet2g bands at the Fermi energy,
separated from theeσg and oxygen bands.

While the Hund’s rule couplingJ is insensitive to screening effects and may, thus,
be obtained within LDA to a good accuracy (J = 0.93 eV25), the LDA-calculated value
of the Coulomb repulsionU has a typical uncertainty of at least 0.5 eV.24 To overcome
this uncertainty, we study the spectra obtained by LDA+DMFT(QMC) for three different
values of the Hubbard interaction (U = 4.5, 5.0, 5.5) in Fig. 11. All QMC results presented
were obtained forT = 0.1 eV. However, simulations for V2O3 at U = 5 eV, T = 0.143
eV, andT = 0.067 eV suggest only a minor smoothing of the spectrum with increasing
temperature. From the results obtained we conclude that thecritical value ofU for the
MIT is at about5 eV: At U = 4.5 eV one observes pronounced quasiparticle peaks at
the Fermi energy, i.e., characteristic metallic behavior,even for the crystal structure of the
insulator(V0.962Cr0.038)2O3, while atU = 5.5 eV the form of the calculated spectral
function is typical for an insulator for both sets of crystalstructure parameters. AtU = 5.0
eV one is then at, or very close to, the MIT since there is a pronounced dip in the DOS at the
Fermi energy for botha1g andeπg orbitals for the crystal structure of(V0.962Cr0.038)2O3,
while for pureV2O3 one still finds quasiparticle peaks. (We note that atT ≈ 0.1 eV one
only observes metallic-like and insulator-like behavior,with a rapid but smooth crossover
between these two phases, since a sharp MIT occurs only at lower temperatures39, 71). The
critical value of the Coulomb interactionU ≈ 5 eV is in reasonable agreement with the
values determined spectroscopically by fitting to model calculations, and by constrained
LDA, see44 for details.

To compare with the photoemission spectrum ofV2O3 spectrum by Schrammeet al.74
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and by Kim et al.75 as well as with the X-ray absorption data by Mülleret al.,76 the
LDA+DMFT(QMC) spectrum of Fig. 11 is multiplied with the Fermi function atT = 0.1
eV and Gauss-broadened by0.05 eV to account for the experimental resolution. The the-
oretical result forU = 5 eV is seen to be in good agreement with experiment (Fig. 12). In
contrast to the LDA results, our results not only describe the different bandwidths above
andbelow the Fermi energy (≈ 6 eV and≈ 2 − 3 eV, respectively), but also the position
of two (hardly distinguishable) peaks below the Fermi energy (at about -1 eV and -0.3 eV)
as well as the pronounced two-peak structure above the Fermienergy (at about 1 eV and
3-4 eV). While LDA also gives two peaks below and above the Fermi energy, their position
and physical origin is quite different. Within LDA+DMFT(QMC) the peaks at -1 eV and
3-4 eV are the incoherent Hubbard bands induced by the electronic correlations whereas in
the LDA the peak at 2-3 eV is caused by theeσg states and that at -1 eV is the band edge
maximum of thea1g andeπg states (see Fig. 10). Note that the theoretical and experimen-
tal spectrum is highlyasymmetricw.r.t the Fermi energy. This highasymmetrywhich is
caused by the orbital degrees of freedom is missing in the one-band Hubbard model which
was used by Rozenberget al.77 to describe the optical spectrum ofV2O3.

The comparison between theory and experiment for Cr-dopedinsulatingV2O3 is not
as good as for metallicV2O3, see Ref. 75. This might be, among other reasons, due to
the different Cr-doping of experiment and theory, the difference in temperatures (which
is important because the insulating gap of a Mott insulator is filled when increasing the

23



-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

In
te

n
s
it
y
 i
n

 a
rb

it
ra

ry
 u

n
it
s

E(eV)

LDA
LDA+DMFT(QMC)

Kim et al’01
Schramme et al’00

0 1 2 3 4 5 6

E(eV)

LDA
LDA+DMFT(QMC)

Mueller et al’97

Figure 12. Comparison of the LDA+DMFT(QMC) spectrum44 atU = 5 eV andT = 0.1 eV ≈ 1000 K below
(left Figure) and above (right Figure) the Fermi energy (at 0eV) with the LDA spectrum44 and the experimental
spectrum (left: photoemission spectrum of Schrammeet al.74 and Kimet al.;75 right: X-ray absorption spectrum
of Müller et al.76).

temperature71), or the fact that every V ion has a unique neighbor in one direction, i.e., the
LDA supercell calculation hasa pair of V ions per unit cell. The latter aspect has so far not
been included but arises naturally when one goes from the simplified calculation scheme
described in Section 2.7 (and employed in the present Section with different self-energies
for thea1g andeπg bands) to a full Hamiltonian calculation.

Particularly interesting are the spin and the orbital degrees of freedom inV2O3. From
our calculations,44 we conclude that the spin state ofV2O3 is S = 1 throughout the Mott-
Hubbard transition region. This agrees with the measurements of Parket al.78 and also
with the data for the high-temperature susceptibility.79 But, it is at odds with theS=1/2
model by Castellaniet al.80 and with the results for a one-band Hubbard model which
corresponds toS = 1/2 in the insulating phase and, contrary to our results, shows asub-
stantial change of the local magnetic moment at the MIT.71 For the orbital degrees of
freedom we find a predominant occupation of theeπg orbitals, but with a significant ad-
mixture of a1g orbitals. This admixture decreases at the MIT: in the metallic phase we
determine the occupation of the (a1g, eπg1, eπg2) orbitals as (0.37, 0.815, 0.815), and in the
insulating phase as (0.28, 0.86, 0.86). This should be compared with the experimental
results of Parket al.78 From their analysis of the linear dichroism data the authorscon-
cluded that the ratio of the configurationseπg e

π
g :eπga1g is equal to 1:1 for the paramagnetic

metallic and 3:2 for the paramagnetic insulating phase, corresponding to a one-electron
occupation of (0.5,0.75,0.75) and (0.4,0.8,0.8), respectively. Although our results show a
somewhat smaller value for the admixture ofa1g orbitals, the overall behavior, including
the tendency of adecreaseof thea1g admixture across the transition to the insulating state,
are well reproduced.

In the study above, the experimental crystal parameters ofV2O3 and
(V0.962Cr0.038)2O3 have been taken from the experiment. This leaves the question
unanswered whether a change of the lattice is the driving force behind the Mott transition,
or whether it is the electronic Mott transition which causesa change of the lattice. For
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another system, Ce, we will show in Section 5 that the energetic changes near a Mott
transition are indeed sufficient to cause a first-order volume change.

5 The Cerium volume collapse: An example for a4f -electron system

Cerium exhibits a transition from theγ- to theα-phase with increasing pressure or de-
creasing temperature. This transition is accompanied by anunusually large volume change
of 15%,81 much larger than the 1-2% volume change inV2O3. Theγ-phase may also be
prepared in metastable form at room temperature in which case the reverseγ-α transition
occurs under pressure.82 Similar volume collapse transitions are observed under pressure
in Pr and Gd (for a recent review see Ref. 83). It is widely believed that these transitions
arise from changes in the degree of4f electron correlation, as is reflected in both the Mott
transition84 and the Kondo volume collapse (KVC)85 models.

The Mott transition model envisions a change from itinerant, bonding character of the
4f -electrons in theα-phase to non-bonding, localized character in theγ-phase, driven
by changes in the4f -4f inter-site hybridization. Thus, as the ratio of the4f Coulomb
interaction to the4f -bandwidth increases, a Mott transition occurs to theγ-phase, similar
to the Mott-Hubbard transition of the 3d-electrons inV2O3 (Section 4).

The Kondo volume collapse85 scenario ascribes the collapse to a strong change in the
energy scale associated with the screening of the local4f -moment by conduction electrons
(Kondo screening), which is accompanied by the appearance of an Abrikosov-Suhl-like
quasiparticle peak at the Fermi level. In this model the4f -electron spectrum of Ce would
change across the transition in a fashion very similar to theMott scenario, i.e., a strong re-
duction of the spectral weight at the Fermi energy should be observed in going from theα-
to theγ-phase. The subtle difference comes about by theγ-phase having metallicf -spectra
with a strongly enhanced effective mass as in a heavy fermionsystem, in contrast to thef -
spectra characteristic of an insulator in the case of the Mott scenario. Thef -spectra in the
Kondo picture also exhibit Hubbard side-bands not only in theγ-phase, but in theα-phase
as well, at least close to the transition. While local-density and static mean-field theories
correctly yield the Fermi-level peaks in thef -spectra for theα-phase, they do not exhibit
such additional Hubbard side-bands, which is sometimes taken as characteristic of the “α-
like” phase in the Mott scenario.84 However, this behavior is more likely a consequence
of the static mean-field treatment, as correlated solutionsof both Hubbard and periodic
Anderson models exhibit such residual Hubbard side-bands in theα-like regimes.86

Typically, the Hubbard model and the periodic Anderson model are considered as
paradigms for the Mott and KVC model, respectively. Although both models describe
completely different physical situations it was shown recently that one can observe a sur-
prisingly similar behavior at finite temperatures: the evolution of the spectrum and the
local magnetic moment with increasing Coulomb interactionshow very similar features as
well as, in the case of a periodic Anderson model with nearestneighbor hybridization, the
phase diagram and the charge compressibility.86, 87 From this point of view the distinc-
tion between the two scenarios appears to be somewhat artificial, at least at temperatures
relevant for the description of theα-γ transition.

For a realistic calculation of the Ceriumα-γ transition, we employ the full Hamiltonian
calculation described in Sections 2.2, 2.3, and 2.4 where the one-particle Hamiltonian
was calculated by LDA and the4f Coulomb interactionU along with the associated4f
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site energy shift by a constrained LDA calculation (for details of the the two independent
calculations presented in the current Section see Refs. 51,83 and Ref. 50). We have not
included the spin-orbit interaction which has a rather small impact on LDA results for Ce,
nor the intra-atomic exchange interaction which is less relevant for Ce as occupations with
more than one4f -electron on the same site are rare. Furthermore, the6s-, 6p-, and5d-
orbitals are assumed to be non-interacting in the formalismof Eq. (13), Section 2.3. Note,
that the4f orbitals are even better localized than the3d orbitals and, thus, uncertainties
in U are relatively small and would only translate into a possible volume shift for the
α-γ-transition.

The LDA+DMFT(QMC) spectral evolution of the Ce4f -electrons is presented in
Fig. 13. It shows similarities toV2O3 (Fig. 11, Section 4): At a volume per atom
V = 20 Å3, Fig. 13 shows that almost the entire spectral weight lies ina large quasi-
particle peak with a center of gravity slightly above the chemical potential. This is similar
to the LDA solution, however, a weak upper Hubbard band is also present even at this
small volume. At the volumes29 Å3 and34 Å3 which approximately bracket theα-γ tran-
sition, the spectrum has a three peak structure. Finally, byV = 46 Å3, the central peak
has disappeared leaving only the lower and upper Hubbard bands. However, an important
difference toV2O3 is that thespd-spectrum shows metallic behavior and, thus, Cerium
remains a metal throughout this transition monitored by a vanishing4f quasiparticle reso-
nance.

To study the energetic changes associated with the rapid change of the quasiparticle
weight at the Fermi energy, we calculate the DMFT energy per site for the model Hamil-
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tonian (13)

EDMFT =
T

Nk

∑

nkσ

Tr(H0
LDA(k)Gk(iωn))e

iωn0+

+ Uf d. (47)

Here, Tr denotes the trace over the16 × 16 matrices,T the temperature,Nk the number
of k points,Gk the Green function matrix w.r.t. the orbital indices,H0

LDA(k) the LDA
one-particle matrix Eq. (17), and

d =
1

2

∑′

mσ,m′σ′
〈n̂ifmσ n̂ifm′σ′〉 (48)

is a generalization of the one-band double occupation for multi-band models.
Fig. 14a shows our calculated DMFT(QMC) energiesEDMFT as a function of atomic

volume at three temperaturesrelative to the paramagnetic Hartree Fock (HF) energies
EPMHF [of the Hamiltonian (13)], i.e., the energy contribution due to electronic corre-
lations. Similarly given are the polarized HF energies which reproduceEDMFT at large
volumes and low temperatures. With decreasing volume, however, the DMFT energies
bend away from the polarized HF solutions. Thus, atT = 0.054 eV≈ 600 K, a region of
negative curvature inEDMFT−EPMHF is evident within the observed two phase region
(arrows).

Fig. 14b presents the calculated LDA+DMFT total energyEtot(T ) = ELDA(T )+
EDMFT(T )−EmLDA(T ) whereEmLDA is the energy of an LDA-like solution of the Hamil-
tonian (13).88 Since bothELDA andEPMHF−EmLDA have positive curvature through-
out the volume range considered, it is the negative curvature of the correlation energy in
Fig. 14a which leads to the dramatic depression of the LDA+DMFT total energies in the
rangeV = 26-28Å3 for decreasing temperature, which contrasts to the smallerchanges
nearV=34 Å3 in Fig. 14b. This trend is consistent with a double well structure emerging
at still lower temperatures (prohibitively expensive for QMC simulations), and with it a
first-order volume collapse. This is in reasonable agreement with the experimental volume
collapse given our use of energies rather than free energies, the different temperatures, and
the LDA and DMFT approximations. A similar scenario has beenproposed recently for
theδ-α transition in Pu on the basis of LDA+DMFT calculations,48 which solves DMFT
by an ansatz inspired by IPT and includes a modification of theDFT/LDA step to account
for the density changes introduced by the DMFT.49

In a separate LDA+DMFT(NCA) calculation for Ce, we have obtained a number of
physical quantities for both phases which may be compared toexperimental values.50 Var-
ious static properties extracted from the calculations50 and their counterparts from experi-
ments are collected in Table 1 and show an overall fair to goodagreement in the tendencies
and, except for the susceptibility, the absolute values. Since the calculation of the magnetic
susceptibilityχ in Ref. 50 was based on simplifying assumptions, the absolute numbers
cannot be expected to match experiment. However, the general tendency and especially
the ratio betweenα- andγ-Ce is in good agreement with experiment. It is interesting to
note that the experiments predict a finite Kondo screening-scale for both phases, which ac-
tually would point toward the KVC scenario. Finally, let us compare spectral functions for
the4f -states calculated with the LDA+DMFT(NCA) approach to experimental data.91 The
photoemission spectrum forα-Ce (upper part of Fig. 15) shows a main structure between
3 eV and7 eV, which is attributed to4f2 final state multiplets. In the calculated spectrum
all excitations to4f2 states are described by the featureless upper Hubbard band.As a

27



−2

−1

0

E
−

E
P

M
H

F
  (

eV
)

T=0.054 eV
T=0.136 eV
T=0.544 eV

10 20 30 40 50
V (Å

3
)

1.2

1.6

2.0

E
to

t  
(e

V
)

(a)

(b)

α γ

polarized HF

Figure 14. (a) Correlation energyEDMFT−EPMHF as a function of atomic volume (symbols) and polarized
HF energyEAFHF−EPMHF (dotted lines which, at large V, approach the DMFT curves forthe respective
temperatures); arrows: observed volume collapse from theα- to theγ-phase. The correlation energy sharply
bends away from the polarized HF energy in the region of the transition. (b) The resultant negative curvature
leads to a growing depression of the total energy nearV =26–28 Å3 as temperature is decreased, consistent with
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α-CeTheo α-Ce89, 90 γ-CeTheo γ-Ce89, 90

P0 0.126 0.1558 0.0150 0.0426
P1 0.829 0.8079 0.9426 0.9444
P2 0.044 0.0264 0.0423 0.0131
nf 0.908 0.8 . . . 0.861 1.014 0.971 . . .1

TK , [K] 1000 945 . . .2000 30 60 . . . 95
χ, [10−3emu/mol] 1.08 0.53 . . .0.70 24 8.0 . . . 12

Table 1. Comparison between LDA+DMFT(NCA) calculated parameters for bothα- andγ-phase atT = 580 K

and experimental values89,90 [reproduced from Ref. 50].P0, P1 andP2 are partial probabilities for an empty,
singly and doubly occupied4f -state,nf is thef -electron occupancy,TK the estimated Kondo temperature, and
χ the magnetic susceptibility.

consequence of the simplified interaction model all doubly occupied states are degenerate.
This shortcoming in our calculation is responsible for the sharply peaked main structure.
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The neglected exchange interaction would produce a multiplet structure, which would be
closer to the experiment. The experimental peak at about0.5 eV is attributed to two4f1

final states, which are split by spin-orbit coupling. The calculatedf -spectrum shows a
sharp quasiparticle or Kondo resonance slightly above the Fermi energy, which is the re-
sult of the formation of a singlet state betweenf - and conduction states. We thus suggest
that the spectral weight seen in the experiment is a result ofthis quasiparticle resonance.
Since we did not yet include spin-orbit coupling in our model, we cannot observe the men-
tioned splitting of the resonance. However, as it is well known,94 the introduction of such a
splitting would eventually split the Kondo resonance. If weused the experimentally deter-
mined value of about0.3 eV for the spin-orbit splitting,92 the observed resonance of width
0.5 eV would indeed occur in the calculations. In the lower part of Fig. 15, a comparison
between experiment and our calculation forγ-Ce is shown. The most striking difference
between lower and upper part of Fig. 15 is the absence of the Kondo resonance in the high
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temperature phase (γ-Ce; transition temperature141 K81) which is in agreement with our
calculations.

In the insets of Fig. 15, our results for the non-occupied states in thef -density are
compared with RIPES data.93 The calculatedf -spectra were multiplied by the Fermi-step
function and broadened with an Lorentzian of the width0.1 eV in order to mimic the exper-
imental resolution in the theoretical curves. Here, as above the theoretical overestimation
of the sharpness of the upper Hubbard band is a consequence ofthe simplified local inter-
action and thus of the missing multiplet structure of the4f2-final states. The main feature
of the experimental spectra, i.e., a strong decrease of the intensity ratio for Kondo reso-
nance and upper Hubbard band peaks fromα- to γ-Ce, can also be seen in the theoretical
curves of Fig. 15 as well as in the study presented in Fig. 13. Amore thorough comparison
of these two independent LDA+DMFT(NCA) and LDA+DMFT(QMC) studies remains to
be done.

6 Conclusion and Outlook

In this paper we discussed the set-up of the computational scheme LDA+DMFT which
merges two non-perturbative, complementary investigation techniques for many-particle
systems in solid state physics. LDA+DMFT allows one to perform ab initio calculations
of real materials with strongly correlated electrons. Using the band structure results cal-
culated within local density approximation (LDA) as input,the missing electronic corre-
lations are introduced by dynamical mean-field theory (DMFT). On a technical level this
requires the solution of an effective self-consistent, multi-band Anderson impurity prob-
lem by some numerical method (e.g. IPT, NCA, QMC). Comparison of the photoemission
spectrum of La1−xSrxTiO3 calculated by LDA+DMFT using IPT, NCA, and QMC re-
veal that the choice of the evaluation method is of considerable importance. Indeed, only
with the numerically exact QMC quantitatively reliable results are obtained. The results
of the LDA+DMFT(QMC) approach were found to be in very good agreement with the
experimental photoemission spectrum of La0.94Sr0.06TiO3.

We also presented results of a LDA+DMFT(QMC) study44 of the Mott-Hubbard metal-
insulator transition (MIT) in the paramagnetic phase of (doped) V2O3. These results
showed a Mott-Hubbard MIT at a reasonable value of the Coulomb interactionU ≈ 5eV
and are in very good agreement with the experimentally determined photoemission and
X-ray absorption spectra for this system, i.e., aboveand below the Fermi energy. In
particular, we find a spin stateS = 1 in the paramagnetic phase, and an orbital admix-
ture ofeπg e

π
g andeπga1g configurations, which both agree with recent experiments. Thus,

LDA+DMFT(QMC) provides a remarkably accurate microscopictheory of the strongly
correlated electrons in the paramagnetic metallic phase ofV2O3.

Another material where electronic correlations are considered to be important is
Cerium. We reviewed our recent investigations of the Ceα-γ transition, based on
LDA+DMFT(QMC)51 and LDA+DMFT(NCA)50 calculations. The spectral results and
susceptibilities show the same tendency as seen in the experiment, namely a dramatic re-
duction in the size of the quasiparticle peak at the Fermi level when passing from theα-
to theγ-phase. While we do not know at the moment whether the zero-temperature quasi-
particle peak will completely disappear at an even larger volume (i.e., in a rather Mott-like
fashion) or simply fade away continuously with increasing volume (i.e., in a more Kondo-
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like fashion), an important aspect of our results is that therapid reduction in the size of
the peak seems to coincide with the appearance of a negative curvature in the correlation
energy and a shallow minimum in the total energy. This suggest that the electronic corre-
lations responsible for the reduction of the quasiparticlepeak are associated with energetic
changes that are strong enough to cause a volume collapse in the sense of the Kondo vol-
ume collapse model,85 or a Mott transition model84 including electronic correlations.

At present LDA+DMFT is the only availableab initio computational technique which
is able to treat correlated electronic systems close to a Mott-Hubbard MIT, heavy fermions,
andf -electron materials. The physical properties of such systems are characterized by the
correlation-induced generation of small, Kondo-like energy scales which require the ap-
plication of genuine many-body techniques. The appearanceof Kondo-like energy scales
in strongly correlated systems leads to several experimentally relevant consequences. One
of the most important features is the enhancement of the quasiparticle mass m∗ (i.e., the
decrease of the quasiparticle residue Z). This phenomenon can be observed as an enhance-
ment of the coefficientγ in the specific heat. Another important characteristic is the Wil-
son ratio betweenγ and the Pauli spin susceptibilityχ. Future LDA+DMFT investigations
will determine these quantities for real systems, as well asthe optical conductivity, phase-
diagrams, the local vertex function, and various susceptibilities.

LDA+DMFT provides, at last, a powerful tool forab initio investigations of real mate-
rials with strong electronic correlations. Indeed, LDA+DMFT depends on the input from
both band structure theoryand many-body approaches. Hence, for this computational
scheme to be entirely successful in the future two strong andvital communities will finally
have to join forces.
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24. I. A. Nekrasov, K. Held, N. Blümer, A. I. Poteryaev, V. I.Anisimov, and D. Vollhardt,
Euro. Phys. J. B18, 55 (2000).

25. I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B53, 7158 (1996).
26. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B57, 6884 (1998).
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