Российская академия наук Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

«Утверждаю» Врио. директора ИЭФ УрО РАН

> В.Г. Шпак 2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Современные лазеры и лазерные технологии» Б1.В.ДВ.1-2

Специальность 03.06.01 – «Физика и астрономия»

Программу составил:

с.н.с. ИЭФ УрО РАН к.ф.-м.н., доцент

В Лисенков В.В

СОГЛАСОВАНО:

Зам. директора по НР ИЭФ УрО РАН

к.т.н. «<u>6</u>» <u>феврале</u> 2015 г.

Учёный секретарь ИЭФ УрО РАН к.ф.-м.н.

«<u>в</u>» девраме 2015 г.

Иванов М.Г.

колоб Кокорина Е.Е.

Рабочая программа утверждена на заседании Учёного совета ИЭФ УрО РАН. Протокол № 1 от 06.02.2015 г.

1. Цели и задачи дисциплины.

- расширить кругозор и дать более глубокие знания основных явлений и законов генерации лазерного излучения и взаимодействия электромагнитного излучения с веществом, которые необходимы для проведения научных исследований;
 - раскрыть современные тенденции развития лазерной техники;
- сформировать у аспирантов современные представления о взаимодействии электромагнитного и, в частности, лазерного излучения с веществом, что является основой лазерных технологий, которые способствуют техническому прогрессу и улучшению качества жизни;
- сформировать у аспирантов представление об основных тенденциях развития прикладной оптики и лазерных технологий;
- подготовить аспирантов к применению полученных знаний при проведении конкретной научно-исследовательской работы.

2. Требования к уровню освоения содержания дисциплины.

В результате изучения дисциплины аспирант должен:

Знать:

основные воздействия явления И законы генерации И электромагнитного излучения на вещество, включая распространение, отражение и поглощение лазерного излучения, взаимодействие лазерного излучения газовой средой, термогидродинамические при взаимодействии мощного лазерного излучения с веществом, нелинейное воздействие лазерного излучения на среду.

Уметь:

- использовать полученные знания для проведения научноисследовательской работы по конкретной тематики;
- обосновывать полученные результаты, анализировать научные публикации по конкретной проблеме исследований;
 - выявлять тенденции развития своего научного направления.

Владеть:

 навыками использования полученных знаний для проведения научноисследовательской работы по конкретной тематике.

3. Компетенции.

Ŋoౖ	Индекс	Содержание		
n/n		•		
1.	ОПК-1	Способность самостоятельно осуществлять научно- исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-		
		методов исследования и информационно-коммуникационных технологий.		
2.	УК-1	Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач,		
3.	УК-3	в том числе в междисциплинарных областях. Готовность участвовать в работе российских		
3.	у К-3	Готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач.		
4.	УК-4	Способность планировать и решать задачи собственного профессионального и личностного развития.		
5.	ПК-1	Способность ставить, формализовать и решать задачи, умением системно анализировать научные проблемы, генерировать новые идеи и создавать новое знание.		
6.	ПК-2	Способность проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы и информационных технологий с учётом отечественного и зарубежного опыта.		
7.	ПК-3	Способность пользоваться современными методами обработки, анализа и синтеза информации в избранной области физических исследований.		
8.	ПК-4	Способность применять на практике умения и навыки в организации исследовательских и проектных работ, способность самостоятельно организовывать и проводить научные исследования и внедрять их результаты в качестве члена или руководителя коллектива.		

4. Объём дисциплины и виды учебной работы.

Вид учебной работы	Всего		Период обучения	
Вио учеоной рибоню	часов	<i>3ET</i>	Периоо обучения	
Общая трудоёмкость дисциплины	108	3	первый курс	
Аудиторные занятия, в т.ч.:				
Лекции	36	1		
Практические занятия (ПЗ)				
Самостоятельная работа	54	1,5		
Контроль самостоятельной работы	18	0,5		

5. Содержание дисциплины.

5.1. Разделы дисциплин и виды занятий

№ n/n	Раздел дисциплины	Лекции	П3	Сам. раб.	Контр. сам. раб.
1	Основы лазерной генерации.	4		6	2
2	Современные лазеры.	6		9	3
3	Взаимодействие лазерного излучения с газовой средой. Оптический пробой.	4		6	2
4	Взаимодействие лазерного излучения с конденсированными средами. Лазерные технологии.	18		27	9
5	Нелинейное воздействие лазерного излучения на среду. Элементы нелинейной оптики.	4		6	2
Всего часов		36		54	18

5.2. Содержание разделов дисциплины.

5.2.1. Основы лазерной генерации.

Спонтанное и вынужденное излучение. Соотношения Эйнштейна.

Усиление света. Сечение вынужденного излучения. Эффект насыщения.

Оптические резонаторы. Классические конструкции и современные тенденции.

Генерация, распространение и фокусировка лазерного излучения.

5.2.2. Современные лазеры.

СО₂-лазеры. Современные тенденции и конструкции.

Дисковые лазеры.

Волоконные лазеры.

Полупроводниковые лазеры. Лазеры на квантовых точках.

5.2.3. Взаимодействие лазерного излучения с газовой средой. Оптический пробой.

Поглощение электромагнитного излучения свободными электронами.

Механизмы ионизации газовой среды электромагнитным излучением.

Оптические характеристики лазерной плазмы.

Динамика формирования оптического пробоя.

5.2.4. Взаимодействие лазерного излучения с конденсированными средами. Лазерные технологии.

Поглощение и отражение лазерного излучения от поверхности конденсированных сред.

Особенности поглощения лазерного излучения металлами. Скинэффект.

Особенности поглощения лазерного излучения полупроводниками и диэлектриками.

Уравнение теплопроводности с объёмным поглощением лазерного излучения. Частные случаи решения.

Лазерно-индуцированное плавление. Движение фронта расплава.

Лазерно-индуцированное испарение и абляция вещества.

Разлёт и нагрев эрозионной лазерной плазмы.

Эффект глубокого («кинжального») проплавления. Лазерное сверление отверстий.

Лазерная сварка.

Лазерная резка.

Лазерная модификация поверхности.

Лазерное нанесение тонких плёнок.

Селективное лазерное спекание.

Лазерное получение наночастиц.

5.2.5. Нелинейное воздействие лазерного излучения на среду. Элементы нелинейной оптики.

Самофокусировка и самодефокусировка лазерных пучков.

Лазерная самомодуляция. Сжатие лазерных импульсов.

Генерация оптических гармоник.

Вынужденное рассеяние света.

5.3. Самостоятельная работа аспирантов.

- 5.3.1. Проработка лекционного материала по конспектам и учебной литературе (48 ч.).
- 5.3.2. Подготовка к контролю по дисциплине (6 ч.).

6. Учебно-методическое и информационное обеспечение дисциплины.

6.1. Рекомендуемая литература.

а) основная литература:

- 1. Салех, Б., Тейх, М. Оптика и фотоника. Принципы и применения. Т. 1. (Учебное пособие) / Пер. с англ. В.Л. Дербова. Долгопрудный: ИД «Интеллект», 2012. 760 с.
- 2. Салех, Б., Тейх, М. Оптика и фотоника. Принципы и применения. Т. 2. (Учебное пособие) / Пер. с англ. В.Л. Дербова. Долгопрудный: ИД «Интеллект», 2012. 784 с.
- 3. Ковалёв, О.Б., Фомин, В.М. Физические основы лазерной резки толстых листовых материалов. М.: Физматлит, 2013. 256 с.
- 4. Крюков, П.Г. Лазеры ультракоротких импульсов и их применения. Долгопрудный: ИД «Интеллект», 2012. 248 с.
- 5. Осипов, В.В. Синтез нанопорошков методом лазерной абляции с помощью мощного CO_2 -лазера. / В.В. Осипов, В.В. Лисенков, В.В. Платонов; отв. Ред. В.Г. Шпак; ин-т электрофизики УрО РАН // Электрофизика на Урале: четверть века исследований. Екатеринбург: УрО РАН, 2011. С. 153–173.

б) дополнительная литература:

- 1. Веденов, А.А., Гладуш, Г.Г. Физические процессы при лазерной обработке материалов. М.: Энергоатомиздат, 1985. 208 с.
- 2. Делоне, Н.Б. Взаимодействие лазерного излучения с веществом. Конспект лекций. (Учебное руководство). М.: Наука, 1989. 280 с.
- 3. Коротеев, Н.И., Шумай, И.Л. Физика мощного лазерного излучения. М.: Наука, 1991. 312 с.
- 4. Карлов, Н.В. Лекции по квантовой электронике. (Учебное пособие). М.: Наука, 1988. 320 с.

в) методическое обеспечение:

http://iep7.iep.uran.ru/iep/aspir.htm

6.2. Информационное обеспечение.

№ п/п	Ссылка на информационный ресурс	Наименование разработки в электронной форме	Доступность
	http://elibrary.ru/	Научная электронная	доступ
		библиотека eLIBRARY.RU	свободный

7. Материально-техническое обеспечение дисциплины.

Для проведения занятий по дисциплине используются: компьютерный класс, лаборатории Института, оборудование: спектрофотометр, гелийнеоновый лазер.

Программа составлена с учётом рекомендаций по формированию основных профессиональных образовательных программ послевузовского профессионального образования для обучающихся в аспирантуре (№ 0160 от 17 июля 2012 г. Серия 90Л01 № 0000173) и на основе Федеральных государственных требований к структуре основной профессиональной образовательной программы послевузовского профессионально образования (аспирантура), утверждённых приказом Министерства образования и науки РФ от 16.03.2011 г. № 1365 (зарегистрирован Министерством юстиции РФ 10.05.2011 г., регистрационный № 20700).