Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

		«Утверждаю»
-	Директ	ор ИЭФ УрО РАН
		С.А. Чайковский
		т д чайковский

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Нано- и гетероструктуры. Создание материалов и применение в современной технике.» Б1.Э.2-2

для обучающихся по образовательным программам высшего образования — программам подготовки научных и научно-педагогических кадров в аспирантуре ИЭФ УрО РАН

Специальность 03.06.01 – «Физика и астрономия»

Екатеринбург 2022

Программу составили:	
с.н.с. ИЭФ УрО РАН к.х.н.	Калинина Е.Г.
СОГЛАСОВАНО:	
Зам. директора по НР ИЭФ УрО РАН д.фм.н. «» 2022 г.	Болтачев Г.Ш.
Учёный секретарь ИЭФ УрО РАН к.фм.н. «» 2022 г.	Кокорина Е.Е.

т

Рабочая программа утверждена на заседании Учёного совета ИЭФ УрО РАН. Протокол № 4 от 29.06.2022 г.

Программа составлена с учётом Положения о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре), утвержденной Постановлением Правительства РФ № 2122 от 30 ноября 2021 г. и на основе Федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, утверждённых приказом Министерства науки и высшего образования РФ № 951 от 20.10.2021 г. (зарегистрирован Министерством юстиции РФ 23.11.2021 г., регистрационный № 65943).

1. Цели и задачи дисциплины.

- дать общее представление о физико-химических процессах в нанообъектах и функциональных материалах на их основе, технологиях в микроэлектронике на основе нано- и гетероструктур, а также тонких пленок. Ознакомить с основными физическими понятиями и эффектами диффузии в твердых телах и на межфазных границах, характерных для гетероструктур. Рассмотреть особенности физико-химических методов синтеза порошковых наноматериалов и керамической технологии, методов компактирования и консолидации порошков. Ознакомить с мембранными технологиями;
- научить аспирантов собирать, анализировать и систематизировать отечественную и зарубежную научно-техническую информацию по тематике исследования в области нано- и гетероструктур, получить навыки решения конкретных прикладных задач.

2. Требования к уровню освоения содержания дисциплины.

В результате изучения дисциплины аспирант должен:

Знать:

- фундаментальные законы природы и основные физические законы в области термодинамики, статистической физики, физики твердого тела;
- физические и физико-химические основы технологии изделий электроники и наноэлектроники, особенности мембранных и пленочных технологий.

Уметь:

- применять математические методы, физические и химические законы для решения практических задач;
- обеспечивать технологическую и конструктивную реализацию материалов и элементов электронной техники в приборах и устройствах электроники и наноэлектроники, устройствах преобразования энергии и мембранных устройствах;
- использовать полученные знания для проведения научноисследовательской работы по конкретной тематике и обосновывать полученные результаты, анализировать научные публикации по конкретной проблеме исследований, выявлять тенденции развития своего научного направления.

Владеть:

- навыками практического применения законов физики, химии и экологии;
- новыми технологиями, обеспечивающими повышение эффективности проектов, технологических процессов, эксплуатации и обслуживания новой

техники в области электроники и наноэлектроники, устройствах преобразования энергии и мембранных устройствах;

– навыками использования полученных знаний для проведения научноисследовательской работы по конкретной тематике.

3. Объём дисциплины и виды учебной работы.

Вид учебной работы	Всего		Период обучения	
Duo y reonou puoomoi	часов	<i>3ET</i>	Периоо обучения	
Общая трудоёмкость дисциплины	108	3	первый-третий курс	
Аудиторные занятия, в т.ч.:				
Лекции	18	0,5		
Практические занятия (ПЗ)				
Самостоятельная работа	72	2		
Контроль самостоятельной	10	18 0,5		
работы	10			

4. Содержание дисциплины.

4.1. Разделы дисциплин и виды занятий

<u>№</u> n/n	Раздел дисциплины	Лекции	ПЗ	Сам. раб.	Контр. сам. раб.
1	Введение	2		8	2
2	Диффузия в твердых телах и на межфазовых границах в нано- и гетеросистемах	4		16	4
3	Диффузионные процессы и эффекты в микроэлектронике при формировании гетероструктур	3		12	3
4	Нано- и гетероструктуры	2		8	2
5	Физико-химические процессы получения и свойства функциональных твердофазных неорганических наноматериалов электронной техники. Элементы керамической технологии нанопорошков	4		16	4
6	Керамические наноструктурные мембраны	2		8	2

7	Заключение	1		4	1
Всего		18	_	72	1 2
час.		10	-	12	10

4.2. Содержание разделов дисциплины

4.2.1. Введение

Цели и задачи курса, его связь с другими дисциплинами. Основные понятия и определения. Общая характеристика наноматериалов и нанотехнологий. Разновидности наноматериалов. Разновидности нанотехнологий. Области применения наноматериалов и нанотехнологий. История развития наноматериалов и нанотехнологий.

4.2.2. Диффузия в твердых телах и на межфазовых границах в нано- и гетеросистемах

Диффузия. Научное и практическое значение изучения диффузии. Основные виды диффузии. Феноменологическое описание процессов диффузии (Первый и Второй законы Фика). Второе уравнение Фика при наличии в системе дополнительной действующей силы. коэффициентов Виды коэффициента диффузии диффузии. Взаимосвязь с кристаллическим строением твердых Температурная зависимость коэффициента тел. диффузии. Закон Аррениуса. Энергия активации диффузии и ее определение.

Процессы диффузии на поверхности. Уравнения случайного блуждания. Анизотропия поверхностной диффузии. Ориентационная анизотропия. Анизотропия по направлениям. Атомные механизмы поверхностной диффузии. Кластеры. Поверхностная диффузия кластеров. Гетеродиффузия в присутствии атомов третьего элемента. Сурфактанты. Механизм Франка-Ван дер Мерве. Механизм Вольмера-Вебера. Механизм Странского-Крастанова. Поверхностная диффузия, сопровождающаяся формированием новой фазы. Механизм твёрдофазного растекания.

Объемная зернограничная диффузия в твердом теле. Возможные механизмы диффузии кристаллах. Зернограничная диффузия. режимов диффузии по границам зерен Классификация кинетических зернограничной диффузии. Диффузия в Харрисона. Модель Фишера «активных» или дефектных средах. Физико-химические процессы, протекающие при спекании порошковых материалов и керамики.

4.2.3. Диффузионные процессы и эффекты в микроэлектронике при формировании гетероструктур

Формирование p-n переходов методом диффузии. Распределение примеси при диффузии. Термическое окисление. Ионная имплантация примесей. Тонкие пленки. Диффузионные методы нанесения покрытий.

4.2.4. Нано- и гетероструктуры

Нано- и гетероструктуры с повышенной ионной проводимостью. Наноионика. Вертикально ориентированные нанокомпозитные пленки, механизм и способы их формирования.

4.2.5. Физико-химические процессы получения и свойства функциональных твердофазных неорганических наноматериалов электронной техники. Элементы керамической технологии нанопорошков

Классификация материалов. Материалы с электрическими функциями. Материалы с магнитными функциями. Материалы с оптическими функциями. Диэлектрические керамические материалы в электронной технике. Основной принцип технологии получения керамики. Общая схема изготовления керамического изделия.

Технология размола в лабораторных условиях (мельницы планетарного типа; дезинтеграторы; криодиспергирование) и в промышленности (турбомельницы; шаровые мельницы; вибромельницы; струйные мельницы). Методы формования керамики. Горячее литьё под давлением. Метод прессования. Магнитно-импульсный метод прессования. Сухое ультразвуковое квазирезонансное прессование. Технология литья пленок. Применение наноматериалов в керамической технологии.

4.2.6. Керамические наноструктурные мембраны

Современные тенденции в производстве энергии. Общие особенности мембранных процессов и типы мембран. Определение и классификация мембран. Возможные варианты применения мембран. Мембранные реакторы. Кислородные мембраны. Различные принципы работы кислородной мембраны: смешанный ионно-электронный проводник, твердоэлектролитная ячейка (кислородный насос). Требования к материалам мембрана. кислородной мембраны. Композитная двухфазная Термодинамические условия конверсии метана в оксидном мембранном конвертере. Катализаторы парциального окисления метана. Проблемы поиска новых смешанных проводников для керамических мембран.

4.2.7. Заключение

Перспективы развития технологии нано- и гетероструктур, а также создания перспективных функциональных материалов и устройств электронной техники и преобразования энергии. Проблемы, возможные пути развития.

4.3. Самостоятельная работа аспирантов.

- 4.3.1. Проработка лекционного материала по конспектам и учебной литературе (72 ч.).
- 4.3.2. Подготовка к контролю по дисциплине (18 ч.).

5. Учебно-методическое и информационное обеспечение дисциплины.

5.1. Рекомендуемая литература.

а) основная литература:

- 1. Котов, Ю.А. Импульсные технологии и наноматериалы. Избранные труды / Ю.А. Котов; отв. Ред. В.Г. Шпак. Екатеринбург: РИО УрО РАН, 2013. 458 с.
- 2. Гусев, А.И. Наноматериалы, наноструктуры, нанотехнологии. Издание 2-е, исправленное. Москва: ФИЗМАТЛИТ, 2009. 416 с.
- 3. Соковнин, С.Ю., Ильвес, В.Г. Применение импульсного электронного пучка для получения нанопорошков некоторых оксидов металлов / [Отв. ред. С.П. Никулин]. Екатеринбург: РИО УрО РАН, 2011. 318 с.
- 4. Бокштейн, Борис Самуилович. Диффузия в металлах: Учеб. пособие для вузов / Б. С. Бокштейн. М.: Металлургия, 1978.— 248 с.
- 5. Малкович, Роальд Шлемович. Математика диффузии в полупроводниках. СПб.: Наука, 1999. 389 с.
- 6. Рамбиди, Николай Георгиевич. Физические и химические основы нанотехнологий / Н. Г. Рамбиди, А. В. Березкин. Москва: ФИЗМАТЛИТ, 2009.-456 с.

б) дополнительная литература:

- 1. Наноматериалы. Нанотехнологии. Наносистемная техника. Мировые достижения за 2005 год. (Сборник) / [Под ред. П.П. Мальцева]. Москва: Техносфера, 2006.-149 с.
- 2. Pikalova, E.Yu.; Kalinina, E.G. Place of Electrophoretic Deposition Among Thin-Film Methods Adapted to the Solid Oxide Fuel Cell Technology: A Short Review. Int. J. Energy Prod. Manag. **2019**, 4, 1–27. https://doi.org/10.2495/EQ-V4-N1-1-27.
- 3. Kalinina E.G., Pikalova E.Y. // Russ. Chem. Rev. 2019. V. 88. № 12. Р. 1179. https://doi.org/10.1070/RCR4889 [Калинина Е.Г., Пикалова Е.Ю. // Усп. хим. 2019. Т. 88. № 12. С. 1179.]

4. Pikalova E.Yu., Kalinina E.G. // Russ. Chem. Rev. 2021. V. 90. № 6. Р. 703. https://doi.org/10.1070/RCR4966 [Пикалова Е.Ю., Калинина Е.Г. // Усп. хим. 2021. Т. 90. № 6. С. 703.]

в) методическое обеспечение:

http://iep7.iep.uran.ru/iep/aspir.htm

5.2. Информационное обеспечение

№ п/п	Ссылка на информационный ресурс	Наименование разработки в электронной форме	Доступность
	http://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU	доступ свободный

6. Материально-техническое обеспечение дисциплины

Для проведения занятий по дисциплине используются: компьютерный класс, лаборатории Института, оборудование: прибор ДРОН для рентгенофазового анализа материалов, микротвердомер, система исследования материалов после облучения ионами ИЛМ.