Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)

	«Утверждаю»
Директ	ор ИЭФ УрО РАН
	-
	С.А. Чайковский
	2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Электронные свойства твёрдых тел» Б1.Э.1-1

для обучающихся по образовательным программам высшего образования – программам подготовки научных и научно-педагогических кадров в аспирантуре ИЭФ УрО РАН

Специальность 03.06.01 – «Физика и астрономия»

Программу составили:	
г.н.с. ИЭФ УрО РАН член-корр.РАН	Некрасов И.А.
в.н.с. ИЭФ УрО РАН д.фм.н.	Кучинский Э.3.
СОГЛАСОВАНО:	
Зам. директора по НР ИЭФ УрО РАН д.фм.н. «» 2022 г.	Болтачев Г.Ш.
Учёный секретарь ИЭФ УрО РАН к.фм.н. «» 2022 г.	Кокорина Е.Е.

Рабочая программа утверждена на заседании Учёного совета ИЭФ УрО РАН. Протокол № 4 от 29.06.2022 г.

Программа составлена с учётом Положения о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре), утвержденной Постановлением Правительства РФ № 2122 от 30 ноября 2021 г. и на основе Федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, утверждённых приказом Министерства науки и высшего образования РФ № 951 от 20.10.2021 г. (зарегистрирован Министерством юстиции РФ 23.11.2021 г., регистрационный № 65943).

1. Цели и задачи дисциплины.

Целью данного курса является ознакомление с основами компьютерного моделирования электронной структуры кристаллических твёрдых тел. Для достижения этой цели теоретический материал, изложенный на лекциях, закрепляется внеклассным решением задач по каждому разделу курса.

2. Требования к уровню освоения содержания дисциплины.

В результате изучения дисциплины аспирант должен:

Знать:

как получаются модельные электронные дисперсии, а также электронные дисперсии реальных кристаллических твёрдых тел.

Уметь:

— рассчитать электронную структуру простейших кристаллов и анализировать полученные электронные дисперсии на основе простейших модельных представлений.

Владеть:

– теоретической базой для анализа электронной структуры и навыками численного счёта электронной структуры простейших кристаллов.

3. Объём дисциплины и виды учебной работы.

Вид учебной работы	Всего		Период обучения	
Duo y reonou puoomoi	часов	<i>3ET</i>	периоо обучения	
Общая трудоёмкость дисциплины	108	3	первый-третий курс	
Аудиторные занятия, в т.ч.:				
Лекции	10	0,27		
Практические занятия (ПЗ)	8	0,22		
Самостоятельная работа	72	2		
Контроль самостоятельной работы	18	0,5		

4. Содержание дисциплины.

4.1. Разделы дисциплин и виды занятий

<u>№</u> n/n	Раздел дисциплины	Лекции	ПЗ	Сам. раб.	Контр. сам. раб.
1	Краткое введение в предмет (историческая ретроспектива).	0,5		1	
2	Основная вычислительная задача зонных методов.	0,5		1	2
3	Водородоподобный атом.	0,5		6	2
4	Общие замечания к электронному строению многоэлектронных атомов.	0,5		2	2
5	Кристаллическая структура твёрдых тел (основные понятия).	1		6	2
6	Обратная решётка (основные понятия).	0,5		6	2
7	Приближение почти свободных электронов.	0,5		6	1
8	Метод сильной связи.	0,5		6	2
9	Обобщённый метод ЛКАО, двухцентровое приближение, интегралы Костера-Слетера.	0,5		6	1
10	Основы численных расчётов электронной структуры реальных веществ.	-	4	10	2
11	Основные программные пакеты для зонных расчётов электронной структуры кристаллических твёрдых тел.	-	4	10	2
12	Сверхпроводимость	5		12	
Всего час.		10	8	72	18

4.2. Содержание разделов дисциплины.

4.2.1. Краткое введение в предмет (историческая ретроспектива).

Определение кристаллического твёрдого тела. Идеальный кристалл. Зонные методы расчёта электронной структуры кристаллических твёрдых тел в современной физике твёрдого тела.

4.2.2. Основная вычислительная задача зонных методов.

Соотношения де Бройля, понятие волнового вектора κ . «Иллюстрация» вывода стационарного уравнения Шрёдингера. Представления. Оператор

импульса в координатном представлении. Собственные значения и собственные функции операторов координаты и импульса в координатном и импульсном представлении. Движение свободного электрона в вакууме (гамильтониан, понятие энергетической дисперсии, волновая функция).

4.2.3. Водородоподобный атом.

Плоский ротатор, магнитное квантовое число m. Пространственный ротатор, орбитальное квантовое число l. Общий вид угловых зависимостей решения задачи о пространственном ротаторе для различных m и l. Боровская теория водородоподобного атома (гипотеза о квантовании момента импульса). Атомная система единиц. Атом водорода (гамильтониан, радиальное уравнение Шрёдингера). Решения радиального уравнения Шрёдингера для различных m и l (радиальное распределение вероятности). Волновая функция водородоподобного атома.

4.2.4. Общие замечания к электронному строению многоэлектронных атомов.

энергия Атом гелия (гамильтониан, волновая функция). Полная многоэлектронного атома. Остов. Вариационный принцип. Вывод уравнений ЛКАО. Хартри-Фока. Молекулярный ион водорода. Метод Метод орбиталей. молекулярных Метод валентных связей. Метод конфигурационного взаимодействия. Схема численного расчёта уровней энергии в многоэлектронных атомах. Периодическая таблица элементов Менделеева.

4.2.5. Кристаллическая структура твёрдых тел (основные понятия).

Вектора трансляции. Элементарная ячейка. Примитивные структуры и структуры с базисом. Ячейка Вигнера-Зейца. Типы трансляционной группы симметрии (сингонии). Решётка Бравэ, классификация решёток Бравэ, пространственные группы симметрии. Точечная группа симметрии (базовые понятия теории групп, пример, группы «треугольника» и «квадрата»). Разложение по неприводимым представлениям (теоретикогрупповой анализ). Примеры: электрон в кристаллическом поле, электрон в электрическом поле. Номенклатура точечных групп симметрии.

4.2.6. Обратная решётка (основные понятия).

Зона Бриллюэна. Теорема Блоха и следствия из неё. Периодический потенциал. Свободный электрон на «пустой» решётке (энергетическая дисперсия в картине приведенных зон).

4.2.7. Приближение почти свободных электронов.

Электрон в слабом периодическом потенциале (плоские волны, решение уравнения Шрёдингера, зонная структура).

4.2.8. Метод сильной связи.

Решение уравнения Шрёдингера и вид энергетической дисперсии в методе сильной связи. Решёточное преобразование Фурье (блоховская сумма). Функции Блоха. Функции Ванье. Решение одномерной цепочки с одинаковыми случая ближайших соседей узлами ДЛЯ (понятие гибридизации, энергии гибридных состояний, состав гибридных волновых энергетические Решение зоны). одномерной функций, с неэквивалентными узлами для случая ближайших соседей (предельные случаи сильной и слабой гибридизации). Решение одномерной цепочки с димеризацией для случая ближайших соседей. Учёт влияния вторых соседей. Поверхность Ферми. Соответствие между поверхностью Ферми и энергетической дисперсией. Плотность электронных состояний. Соответствие между энергетической дисперсией и плотностью состояний (1, 2, 3-х мерные случаи). Особенности Ван-Хова. Плотность состояний для свободного электрона. Численные методы интегрирования по зоне Бриллюэна: метод тетраэдров, метод Гаусса, прямое суммирование по кточкам.

4.2.9. Обобщенный метод ЛКАО, двухценровое приближение, интегралы Костера-Слетера.

Каноническая зонная теория. Типы межорбитальных перекрытий. Угловая зависимость величины перекрытия от типа перекрывающихся орбиталей. Пример применения: оценка величины расщепления d-уровня в октаэдрическом и тетраэдрическом окружении.

4.2.10. Основы численных расчётов электронной структуры реальных веществ.

Метод ячеек. Приближение маффин-тин потенциала. Приближение маффин-тин сфер. Приближение атомных сфер. Теория функционала электронной плотности. Теорема Хоэнберга-Кона. Уравнение Кона-Шема. Вычисление обменно-корреляционного потенциала: приближения LDA, LSDA, GGA.

4.2.11. Основные программные пакеты для зонных расчётов электронной структуры кристаллических твёрдых тел.

Метод присоединенных плоских волн (ППВ), псевдопотенциальные методы, метод линеаризованных маффин-тин орбиталей (ЛМТО). Практика

с использованием ЭВМ: расчёт «кристаллического водорода» в ПК, ГЦК и ОЦК структурах. Анализ дисперсий и плотностей состояний. Расчёт «кристаллического водорода» в ПК, ГЦК и ОЦК структурах для различных магнитных упорядочений (ФМ, различные типы АФМ). Расчёт гипотетического кристалла с двумя сортами атомов (например Li-H, H-O) в ПК, ГЦК и ОЦК структурах для изучения эффектов гибридизации.

4.2.12. Основные физические свойства сверхпроводников.

Критическая температура сверхпроводящего перехода и незатухающий постоянный ток. Подавление сверхпроводимости внешним магнитным полем. Эффект Мейсснера. Сверхпроводимость I и II рода. Тепловые свойства сверхпроводников – теплоёмкость, теплопроводность.

Термодинамика сверхпроводящего перехода в массивном сверхпроводнике. Свободная энергия цилиндрического образца сверхпроводника I рода в магнитном поле. Энтропия сверхпроводящего состояния. Различие характера сверхпроводящих переходов при наличии внешнего магнитного поля и в его отсутствии. Скачок теплоёмкости при сверхпроводящем переходе.

Лондоновская электродинамика сверхпроводимости. Сверхпроводящий ток и эффект Мейсснера в рамках уравнения Лондонов. Глубина проникновения магнитного поля. Основные физические представления двухжидкостной модели сверхпроводимости. Величина лондоновской глубины проникновения магнитного поля в рамках двухжидкостной модели.

4.2.13. Электромагнитные свойства сверхпроводников І рода.

Нелокальная связь между плотностью тока и вектором-потенциалом магнитного поля в сверхпроводниках. Длина когерентности. Промежуточное I состояние сверхпроводника рода В сильном магнитном Промежуточное состояние плоско-параллельной ДЛЯ пластины в перпендикулярном магнитном поле. Критический ток в толстой проволоке из сверхпроводника І рода (правило Силсби). Промежуточное состояние в толстой проволоке с закритическим током.

4.2.14. Теория Гинзбурга-Ландау (ГЛ) и электродинамика сверхпроводников II рода.

Свободная энергия сверхпроводника в теории ГЛ. Дифференциальные уравнения ГЛ для параметра порядка и вектора-потенциала магнитного поля и их граничные условия. Характерные длины уравнений ГЛ — длина когерентности ГЛ, глубина проникновения. Параметр теории ГЛ κ . Градиентная инвариантность уравнений ГЛ.

Критический ток в тонкой плёнке. Квантование магнитного потока. Явление захвата магнитного потока в сверхпроводнике. Тонкая плёнка

в продольном магнитном поле. Энергия границы раздела между нормальной и сверхпроводящей фазами.

Границы применимости теории Гинзбурга-Ландау.

Физическая картина смешанного состояния в сверхпроводниках II рода. Второе критическое поле. Распределение напряженности магнитного поля вокруг изолированной вихревой нити и первое критическое поле. Взаимодействие вихрей и сила Лоренца. Критический ток в сверхпроводнике II рода, центры пиннинга и модель критического состояния. Резистивное состояние сверхпроводников II рода.

4.2.15. Косвенное взаимодействие электронов через фононы.

Физическая картина механизма притяжения электронов через колебания решётки. Причины ограничения эффективного интервала притяжения дебаевской частотой.

4.2.16. Микроскопическая теория Бардина-Купера-Шриффера (БКШ).

Феномен Купера. Куперовская модельная задача о притяжении двух электронов на фоне фермиевского газа невзаимодействующих электронов. Энергия связанного состояния двух электронов и его волновая функция. Неустойчивость основного нормального состояния в случае притяжения между двумя электронами.

Модельный гамильтониан БКШ. Волновая функция основного состояния в модели БКШ. Энергия основного состояния. Возбуждённые состояния в модели БКШ при нулевой температуре, каноническое преобразование Боголюбова и энергетическая щель в спектре элементарных возбуждений.

Модель БКШ при конечных температурах. Приближение среднего самосогласованного поля в гамильтониане БКШ и аномальные средние. Аномальные средние и самосогласованные уравнения для энергетической щели при конечных температурах в методе двухвременных температурных функций Грина. Критическая температура сверхпроводящего перехода и температурная зависимость энергетической щели. Термодинамический потенциал в модели БКШ, энтропия и скачок теплоёмкости.

4.2.17. Сверхпроводимость с необычным спариванием.

Особенности сверхпроводящих свойств высокотемпературных сверхпроводников и d-симметрия сверхпроводящей щели. Разложение спаривательного взаимодействия по плоским волнам в модели двумерной ферми-жидкости. Температура сверхпроводящего перехода и величина сверхпроводящей щели при нулевой температуре в модели БКШ с d-спариванием.

4.2.18. Влияние прямого кулоновского отталкивания между электронами на сверхпроводящее состояние.

Самосогласованное уравнение для энергетической щели в модели БКШ при учёте прямого кулоновского взаимодействия. Критическая температура сверхпроводящего перехода с учётом кулоновского отталкивания. Кулоновский псевдопотенциал и его влияние на показатель изотопического эффекта в сверхпроводниках.

4.2.19. Незатухающий постоянный ток и энергетическая щель.

Условие устойчивости сверхпроводящего конденсата при протекании электрического тока и оценка плотности критического тока из этого условия устойчивости. Сравнение полученной оценки плотности критического тока с плотностью критического тока распаривания в тонких сверхпроводящих плёнках.

4.2.20. Слабая сверхпроводимость.

Стационарный и нестационарный эффекты Джозефсона. Градиентноинвариантная формулировка уравнения для плотности джозефсоновского тока во внешнем магнитном поле. Зависимость величины плотности сверхпроводящего тока узкого джозефсоновского контакта от внешнего магнитного поля. Проникновение внешнего магнитного поля в протяжённый джозефсоновский контакт и уравнение Феррела-Прейнджа для разности фаз сверхпроводящих параметров порядка в протяжённом контакте. Первое критическое поле протяжённого джозефсоновского контакта и джозефсоновские вихри. Двухконтактный сквид и его применение для измерения сверхмалых магнитных полей.

4.3. Самостоятельная работа аспирантов.

- 4.3.1. Проработка лекционного материала по конспектам и учебной литературе (72 ч.).
- 4.3.2. Подготовка к контролю по дисциплине (18 ч.).

5. Учебно-методическое и информационное обеспечение дисциплины.

5.1. Рекомендуемая литература.

а) основная литература:

1. Кучинский, Э.З., Некрасов, И.А., Садовский, М.В. Обобщенная теория динамического среднего поля в физике сильно коррелированных систем (Обзор) // Успехи физических наук, 2012. – Т. 115. С. 1–60.

- 2. Ландау, Л.Д., Лифшиц, Е.М. Теоретическая физика. Т. 3. Квантовая механика. Москва: Наука, 1989.
- 3. Ашкрофт, Н., Мермин, Н. Физика твёрдого тела. Т. 1, 2. М.: Мир, 1975.

б) методическое обеспечение:

http://iep7.iep.uran.ru/iep/aspir.htm

5.2. Информационное обеспечение.

№ п/п	Ссылка на информационный ресурс	Наименование разработки в электронной форме	Доступность
	http://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU	доступ свободный

6. Материально-техническое обеспечение дисциплины.

Для проведения занятий по дисциплине используются: компьютерный класс, расчётные серверы лаборатории теоретической физики ИЭФ УрО РАН, оборудование: оргтехника, проектор.